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Abstract. We present a new shell that provides the full basic function-
ality of a strongly typed lazy functional language, including overloading.
The shell can be used for manipulating files, applications, data and pro-
cesses at the command line. The shell does type checking and only exe-
cutes well-typed expressions. Files are typed, and applications are simply
files with a function type. The shell executes a command line by combin-
ing existing code of functions on disk. We use the hybrid static/dynamic
type system of Clean to do type checking/inference. Its dynamic linker
is used to store and retrieve any expression (both data and code) with
its type on disk. Our shell combines the advantages of interpreters (di-
rect response) and compilers (statically typed, fast code). Applications
(compiled functions) can be used, in a type safe way, in the shell, and
functions defined in the shell can be used by any compiled application.

1 Introduction

Programming languages, especially pure and lazy functional languages like Clean
[1] and Haskell [2], provide good support for abstraction (e.g. subroutines, over-
loading, polymorphic functions), composition (e.g. application, higher-order func-
tions, module systems), and verification (e.g. strong type checking and inference).

In contrast, command line languages used by operating system shells usually
have little support for abstraction, composition, and especially verification. They
do not provide higher-order subroutines, complex data structures, type inference,
or even type checking at all before evaluation. Given their limited set of types
and their specific area of application, this has not been recognized as a serious
problem in the past.

We think that command line languages can benefit from some of the pro-
gramming language facilities, as this will increase their flexibility, reusability
and security. We have previously done research on reducing run-time errors (e.g.
memory access violations, type errors) in operating systems by implementing a
micro kernel in Clean that provides type safe communication of any value of any
type between functional processes, called Famke [3]. This has shown that (mod-
erate) use of dynamic typing [4], in combination with Clean’s dynamic run-time

? Part of this work was supported by InterNLnet.



system and dynamic linker [5, 6], enables processes to communicate any data
(and even code) of any type in a type safe way.

During the development of a shell/command line interface for our prototype
functional operating system it became clear that a normal shell cannot really
make use (at run-time) of the type information derived by the compiler (at
compile-time). To reduce the possibility of run-time errors during execution of
scripts or command lines, we need a shell that supports abstraction and verifi-
cation (i.e. type checking) in the same way as the Clean compiler does. In order
to do this, we need a better integration of compile-time (i.e. static typing) and
run-time (i.e. interactivity) concepts.

In this paper we present a shell for a functional language-based operating sys-
tem that combines the best of both worlds: the interactivity of an interpreter and
the efficiency and type safety of a compiler. This shell is used as the user inter-
face for Famke, the above mentioned kernel of a prototype functional operating
system in development. The shell can make use of compiled functions/programs,
without losing type information. Functions defined in the shell can also be used
by compiled applications.

The shell is built on top of Clean’s hybrid static/dynamic type system and
its dynamic I/O run-time support. It allows programmers to save any Clean ex-
pression, i.e. a graph that can contain data, references to functions, and closures,
to disk. Clean expressions can be written to disk as a dynamic, which contains
a representation of their (polymorphic) static type, while preserving sharing.
Clean programs can load dynamics from disk and use run-time type pattern
matching to reintegrate it into the statically typed program. In this way, new
functionality (e.g. plug-ins) can be added to a running program in a type safe
way.

The shell is called Esther (Extensible Shell with Type cH ecking ExpeRi-
ment), and is capable of:

– reading an expression from the console, using Clean’s syntax for a basic,
but complete, functional language. It offers application, lambda abstraction,
recursive let, pattern matching, function definitions, and even overloading;

– using compiled Clean programs as typed functions at the command line;
– defining new functions, which can be used by other compiled Clean programs

(without using the shell or an interpreter);
– extracting type information (and indirectly, code) from dynamics on disk;
– type checking the expression, and solving overloading, before evaluation;
– constructing a new dynamic containing the correct type and code of the

expression.

First, we introduce the static/dynamic hybrid type system of Clean in Sect. 2.
Section 3 gives a global description of how Esther uses dynamics to type check
an expression. It also give examples of the use of dynamics. In Sect. 4 we show
how to construct a dynamic for each kind of subexpression such that it has the
correct semantics and type, and how to compose them in a type checked way.
Related work is discussed in Sect. 5 and we conclude and mention future research
in Sect. 6.



2 Dynamics in Clean

In addition to its static type system, Clean has recently been extended with
a (polymorphic) dynamic type system [4–6]. A dynamic in Clean is a value of
static type Dynamic, which contains an expression as well as a representation of
the (static) type of that expression. Dynamics can be formed (i.e. lifted from the
static to the dynamic type system) using the keyword dynamic in combination
with the value and an optional type. The compiler will infer the type if it is
omitted1.

dynamic 42 :: Int2

dynamic map fst :: A3.a b: [(a, b)] -> [a]

Function alternatives and case patterns can pattern match on values of type
Dynamic (i.e. bring them from the dynamic back into the static type system).
Such a pattern match consist of a value pattern and a type pattern. In the
example below, matchInt returns Just the value contained inside the dynamic
if it has type Int; and Nothing if it has any other type. The compiler translates
a pattern match on a type into run-time type unification. If the unification fails,
the next alternative is tried, as in a common (value) pattern match.

::4 Maybe a = Nothing | Just a

matchInt :: Dynamic -> Maybe Int

matchInt (x :: Int) = Just x

matchInt other = Nothing

A type pattern can contain type variables which, provided that run-time
unification is successful, are bound to the offered type. In the example below,
dynamicApply tests if the argument type of the function f inside its first argu-
ment can be unified with the type of the value x inside the second argument. If
this is the case then dynamicApply can safely apply f to x. The type variables
a and b will be instantiated by the run-time unification. At compile time it is
generally unknown what type a and b will be, but if the type pattern match
succeeds, the compiler can safely apply f to x. This yields a value with the type
that is bound to b by unification, which is wrapped in a dynamic.

dynamicApply :: Dynamic Dynamic -> Dynamic5

dynamicApply (f :: a -> b) (x :: a) = dynamic f x :: b6

dynamicApply df dx = dynamic "Error: cannot apply"

Type variables in dynamic patterns can also relate to a type variable in the
static type of a function. Such functions are called type dependent functions [7].
A caret (^) behind a variable in a pattern associates it with the type variable with

1 Types containing universally quantified variables are currently not inferred by the
compiler. We will not always write these types for ease of presentation.

2 Numerical denotations are not overloaded in Clean.
3 Clean’s syntax for Haskell’s forall.
4 Defines a new data type in Clean, Haskell uses the data keyword.
5 Clean separates argument types by whitespace, instead of ->.
6 The type b is also inferred by the compiler.



the same name in the static type of the function. The static type variable then
becomes overloaded in the predefined TC (or type code) class. The TC class is used
to ‘carry’ the type representation. In the example below, the static type variable
t will be determined by the (static) context in which it is used, and will impose
a restriction on the actual type that is accepted at run-time by matchDynamic.
It yields Just the value inside the dynamic (if the dynamic contains a value of
the required context dependent type) or Nothing (if it does not).

matchDynamic :: Dynamic -> Maybe t | TC t7

matchDynamic (x :: t^) = Just x

matchDynamic other = Nothing

The dynamic run-time system of Clean supports writing dynamics to disk
and reading them back again, possibly in another program or during another
execution of the same program. The dynamic will be read in lazily after a suc-
cessful run-time unification (triggered by a pattern match on the dynamic). The
amount of data and code that the dynamic linker will link, is therefore deter-
mined by the amount of evaluation of the value inside the dynamic. Dynamics
written by a program can be safely read by any other program, providing a
simple form of persistence and some rudimentary means of communication.

writeDynamic :: String Dynamic *8World -> (Bool, *World)

readDynamic :: String *World -> (Bool, Dynamic, *World)

Running prog1 and prog2 in the example below will write a function and a
value to dynamics on disk. Running prog3 will create a new dynamic on disk that
contains the result of ‘applying’ (using the dynamicApply function) the dynamic
with the name “function” to the dynamic with the name “value”. The closure
40 + 2 will not be evaluated until the * operator needs it. In this case, because
the ‘dynamic application’ of df to dx is lazy, the closure will not be evaluated
until the value of the dynamic on disk named “result” is needed. Running prog4
tries to match the dynamic dr, from the file named “result”, with the type Int.
After this succeeds, it displays the value by evaluating the expression, which is
semantically equal to let x = 40 + 2 in x * x, yielding 1764.

prog1 world = writeDynamic "function" (dynamic * :: Int Int -> Int) world

prog2 world = writeDynamic "value" (dynamic 40 + 2) world

prog3 world = let (ok1, df, world1) = readDynamic "function" world

(ok2, dx, world2) = readDynamic "value" world1

in writeDynamic "result" (dynamicApply df dx) world2

prog4 world = let (ok, dr, world1) = readDynamic "result" world

in (case dr of (x :: Int) -> x, world1)

7 Clean uses | to denote overloading. In Haskell this would be writ-
ten as (TC t) => Dynamic -> Maybe t.

8 This is a uniqueness attribute, indicating that the world environ-
ment is passed around in a single threaded way. Unique values allow safe de-
structive updates and are used for I/O in Clean. The value of type World corre-
sponds with the hidden state of the IO monad in Haskell.



3 An Overview of Esther

The last example of the previous section shows how one can store and retrieve
values, expressions, and functions of any type to and from the file system. It
also shows that the dynamicApply function can be used to type check an appli-
cation at run-time using the static types stored in dynamics. Combining both
in an interactive ‘read expression – apply dynamics – evaluate and show result’
loop gives a very simple shell that already supports the type checked run-time
application of programs to documents.

Obviously, we could have implemented type checking ourselves using one of
the common algorithms involving building and solving a list of type equations.
Instead, we decided to use Clean’s dynamic run-time unification, for this has
several advantages: 1) Clean’s dynamics allow us to do type safe and lazy I/O of
expressions; 2) we do not need to convert between the (hidden) type represen-
tation used by dynamics and the type representation used by our type checking
algorithm; 3) it shows whether Clean’s current dynamics interface is powerful
enough to implement basic type inference and type checking; 4) we get future
improvements of Clean’s dynamics interface for free (e.g. uniqueness attributes
or overloading).

Unlike common command interpreters or shells, our shell Esther does not
work on untyped files that consist of executables and streams of characters.
Instead, all functions/programs are stored as dynamics, forming a rudimentary
typed file system.

Moreover, instead of evaluating the expression by interpretation of the source
code, Esther generates a new dynamic that contains a closure that refers to the
compiled code of other programs. The shell, therefore, is a hybrid interpreter
that generates compiled code. The resulting dynamic can be used by any other
compiled Clean program without using an interpreter or the shell. Dynamics
can contain closures, which refer to code and data belonging to other compiled
Clean programs. When needed for evaluation, the code is automatically linked
to the running program by Clean’s dynamic linker. This approach results in less
overhead during evaluation of the expression than using a conventional source
code interpreter.

Esther performs the following steps in a loop:

– it reads a string from the console and parses it like a Clean expression. It
supports denotations of Clean’s basic and predefined types, application, infix
operators, lambda abstraction, overloading, let(rec), and case expressions;

– identifiers that are not bound by a lambda abstraction, a let(rec), or a case
pattern are assumed to be names of dynamics on disk, and they are read
from disk;

– type checks the expression using dynamic run-time unification and type pat-
tern matching, which also infers types;

– if the command expression does not contain type errors, Esther displays
the result of the expression and the inferred type. Esther will automatically
be extended with any code necessary to display the result (which requires
evaluation) by the dynamic linker.



Fig. 1. A combined screenshot of two incarnations of Esther

3.1 Example: a Session with Esther

To illustrate the expressive power of Esther, we show an Esther session in Fig.
1 (the left window with the white title bar) and explain what happens:

1. ‘Simple’ arithmetic. The shell looks in the current search-path to find the
infix function +. The + is overloaded, and the shell searches again for an
instance for + for type Int. Finally, it responds with the value and inferred
type of the result.

2. Typing the name of a dynamic at the prompt shows its contents, which can
contain unnamed lambda functions (\), and its type.

3. The dynamic map is applied to the dynamic fst yielding the expected type.
4. The infix operator + cannot be applied to an integer and a string.
5. The overloaded function inc is revealed to be overloaded in + and one. The

\ id id is caused by the way Esther handles overloading (see Sect. 4.6.).
6. The lambda expression \f x -> f (f x) is written to disk, using the >>

operator, and named twice. It is defined as a left associative infix operator
with priority 9. Esther shows the internal code and type of the lambda
expression, exposing the fact that it uses combinators (see Sect. 4.2).

7. The dynamic inc is applied to 1.14 via the previously defined operator
twice.

8. Defines a function named head that selects the first argument of a list using
a case expression.

9. Applies head to an empty list yielding a pattern mismatch exception.



10. Defines a function named fac that yields the factorial of its argument.
11. fac 10 is evaluated to 3628800.
12. famkeNewProcess is used to start Esther (which is also stored as a dynamic)

as new process, on the same computer (right window with black title bar):
1 Evaluates cd "/programs/StdEnv" to ‘change directory’ to the direc-

tory that provides Clean’s standard library to Esther, by storing the
functions as dynamics in the file system. Because cd has type String
∗World → ∗World and therefore no result, Esther shows UNIT (i.e. void).

2 Evaluates the application of ls to the empty string, showing all files in
the current directory: the functions in the standard library.

Fig. 2. A combined screenshot of the calculator in action and Esther

3.2 Example: a Calculator that Uses a Shell Function

Figure 2 shows a sequence of screenshots of a calculator program written in
Clean. Initially, the calculator has no function buttons. Instead, it has buttons
to add and remove function buttons. These will be loaded dynamically after
adding dynamics that contain tuples of String and Real Real → Real.

The lower half of Fig. 2 shows a command line in the Esther shell that writes
such a tuple as a dynamic named “2a-b2.u.dyn” to disk. The extension “.dyn”
is added by Clean dynamic linker, the “.u” before the extension is used to store
the file fixity attributes (“u” means prefix). Esther pretty prints these attributes,
but the Microsoft Windows file selector shows the file name in a raw form.



Its button name is 2*a-b^2 and the function is \a b -> 2.0 * a - b * b.
Pressing the Add button on the calculator opens a file selection dialog, shown
at the bottom of Fig. 2. After selecting the dynamic named “2a-2b.u.dyn”, it
becomes available in the calculator as the button 2*a-b^2, and it is applied to
8 and 3 yielding 7.

The calculator itself is a separately compiled Clean executable that runs
without using Esther. Alternatively, one can write the calculator, which has
type [(String, Real Real → Real)] ∗World → ∗World, to disk as a dynamic.
The calculator can then be started from Esther, either in the current shell or as
a separate process.

4 Type Checking with Dynamics

In this section, we show how one can use the type unification of Clean’s dynamic
run-time system to type check a common syntax tree, and how to construct the
corresponding Clean expression. The parsing is trivial and we will assume that
the string has already been successfully parsed. In order to support a basic, but
complete, functional language in our shell we need to support function defini-
tions, lambda, let(rec), and case expressions.

We will introduce the syntax tree piecewise and show for each kind of ex-
pression how to construct a dynamic that contains the corresponding Clean
expression and the type for that expression. Names occurring free in the com-
mand line are read from disk as dynamics before type checking. The expression
can contain references to other dynamics, and therefore to the compiled code of
functions, which will be automatically linked by Clean’s run-time system.

4.1 Application

Suppose we have a syntax tree for constant values and function applications that
looks like:

:: Expr = (@) infixl 99 Expr Expr //10 Application

| Value Dynamic // Constant or dynamic value from disk

We introduce a function compose, which constructs the dynamic containing
a value with the correct type that, when evaluated, will yield the result of the
given expression.

compose :: Expr -> Dynamic

compose (Value d) = d

compose (f @ x) = case (compose f, compose x) of

(f :: a -> b, x :: a) -> dynamic f x :: b

(df, dx) -> raise11("Cannot apply " +++ typeOf df

+++ " to " +++ typeOf dx)

9 This defines an infix constructor with priority 9 that is left associative.
10 This a Clean comment to end-of-line, like Haskell’s --.
11 For easier error reporting, we implemented imprecise user-defined excep-

tions à la Haskell [8]. We used dynamics to make the set of exceptions extensible.



typeOf :: Dynamic -> String

typeOf dyn = toString (typecodeOfDynamic dyn) // pretty print type

Composing a constant value, contained in a dynamic, is trivial. Composing an
application of one expression to another is a lot like the dynamicApply function
of Sect. 2. Most importantly, we added error reporting using the typeOf function
for pretty printing the type of a value inside a dynamic.

4.2 Lambda Expressions

Next, we extend the syntax tree with lambda expressions and variables.

:: Expr = ... // Previous def.

| (-->) infixr 0 Expr Expr // Lambda abstraction: \ .. -> ..

| Var String // Variable

| S | K | I // Combinators

At first sight, it looks as if we could simply replace a Lambda constructor in
the syntax tree with a dynamic containing a lambda expression in Clean:

compose (Var x --> e) = dynamic (\y -> composeLambda x y e :: ? )

The problem with this approach is that we have to specify the type of
the lambda expression before the evaluation of composeLambda. Furthermore,
composeLambda will not be evaluated until the lambda expression is applied to
an argument. This problem is unavoidable because we cannot get ‘around’ the
lambda. Fortunately, bracket abstraction [9] solves both problems.

Applications and constant values are composed to dynamics in the usual way.
We translate each lambda expression (-->) to a sequence of combinators (S, K,
and I) and applications, with the help of the function ski.

compose ... // Previous def.

compose (x --> e) = compose (ski x e)

compose I = dynamic \x -> x

compose K = dynamic \x y -> x

compose S = dynamic \f g x -> f x (g x)

ski :: Expr Expr -> Expr // common bracket abstraction

ski x (y --> e) = ski x (ski y e)

ski (Var x) (Var y) |12 x == y = I

ski x (f @ y) = S @ ski x f @ ski x y

ski x e = K @ e

Composing lambda expressions uses ski to eliminate the Lambda and Var-
iable syntax constructors, leaving only applications, dynamic values, and combi-
nators. Composing a combinator simply wraps its corresponding definition and
type as a lambda expression into a dynamic.

Special combinators and combinator optimization rules are often used to im-
prove the speed of the generated combinator code by reducing the number of
12 If this guard fails, we end up in the last function alternative.



combinators [10]. One has to be careful not to optimize the generated combina-
tor expressions in such a way that the resulting type becomes too general. In
an untyped world this is allowed because they preserve the intended semantics
when generating untyped (abstract) code. However, our generated code is con-
tained within a dynamic and is therefore typed. This makes it essential that we
preserve the principal type of the expression during bracket abstraction. Adding
common η-conversion, for example, results in a too general type for Var "f" -->
Var "x" --> f x: ∀a.a → a, instead of ∀ab.(a → b) → a → b. Such optimiza-
tions might prevent us from getting the principal type for an expression. Simple
bracket abstraction using S, K, and I, as performed by ski, does preserves the
principal type [11].

Code combined by Esther in this way is not as fast as code generated by the
Clean compiler. Combinators introduced by bracket abstraction are the main rea-
son for this slowdown. Additionally, all applications are lazy and not specialized
for basic types. However, these disadvantages only hold for the small (lambda)
functions written at the command line, which are mostly used for plumbing. If
faster execution is required, one can always copy-paste the command line into a
Clean module that writes a dynamic to disk and running the compiler.

In order to reduce the number of combinators in the generated expression,
our current implementation uses Diller’s algorithm C [12] without η-conversion
in order to preserve the principal type, while reducing the number of generated
combinators from exponential to quadratic. Our current implementation seems
to be fast enough, so we did not explore further optimizations by other bracket
abstraction algorithms.

4.3 Irrefutable Patterns

Here we introduce irrefutable patterns, e.g. (nested) tuples, in lambda expres-
sions. This is a preparation for the upcoming let(rec) expressions.

:: Expr = ... // Previous def.

| Tuple Int // Tuple constructor

compose ... // Previous def.

compose (Tuple n) = tupleConstr n

tupleConstr :: Int -> Dynamic

tupleConstr 2 = dynamic \x y -> (x, y)

tupleConstr 3 = dynamic \x y z -> (x, y, z)

tupleConstr ... // and so on...13

ski :: Expr Expr -> Expr

ski (f @ x) e = ski f (x --> e)

ski (Tuple n) e = Value (matchTuple n) @ e

ski ... // previous def.

13 ...until 32. Clean does not support functions or data types with arity above 32.



matchTuple :: Int -> Dynamic

matchTuple 2 = dynamic \f t -> f (fst t) (snd t)

matchTuple 3 = dynamic \f t -> f (fst3 t) (snd3 t) (thd3 t)

matchTuple ... // and so on...

We extend the syntax tree with Tuple n constructors (where n is the num-
ber of elements in the tuple). This makes expressions like Tuple 3 @ Var "x"
@ Var "y" @ Var "z" --> Tuple 2 @ Var "x" @ Var "z" valid expressions.
This example corresponds with the Clean lambda expression \(x, y, z) ->
(x, z).

When the ski function reaches an application in the left-hand side of the
lambda abstraction, it processes both sub-patterns recursively. When the ski
function reaches a Tuple constructor it replaces it with a call to the matchTuple
function. Note that the right-hand side of the lambda expression has already been
transformed into lambda abstractions, which expect each component of the tuple
as a separate argument. We then use the matchTuple function to extract each
component of the tuple separately. It uses lazy tuple selections (using fst and
snd, because Clean tuple patterns are always eager) to prevent non-termination
of recursive let(rec)s in the next section.

4.4 Let(rec) Expressions

Now we are ready to add irrefutable let(rec) expressions. Refutable let(rec) ex-
pressions must be written as cases, which will be introduced in next section.

:: Expr = ... // Previous def.

| Letrec [Def] Expr // let(rec) .. in ..

| Y // Combinator

:: Def = (::=) infix 0 Expr Expr // .. = ..

compose ... // Previous def.

compose (Letrec ds e) = compose (letRecToLambda ds e)

compose Y = dynamic y where y f = f (y f)

letRecToLambda :: [Def] Expr -> Expr

letRecToLambda ds e = let (p ::= d) = combine ds

in ski p e @ (Y @ ski p d)

combine :: [Def] -> Def

combine [p ::= e] = p ::= e

combine [p1 ::= e1:ds] = let (p2 ::= e2) = combine ds

in Tuple 2 @ p1 @ p2 ::= Tuple 2 @ e1 @ e2

When compose encounters a let(rec) expression it uses letRecToLambda to
convert it into a lambda expression. The letRecToLambda function combines
all (possibly mutually recursive) definitions by pairing definitions into a single
(possibly recursive) irrefutable tuple pattern. This leaves us with just a single
definition that letRecToLambda converts to a lambda expression in the usual
way [13].



4.5 Case Expressions

Composing a case expression is done by transforming each alternative into a
lambda expression that takes the expression to match as an argument. If the
expression matches the pattern, the right-hand side of the alternative is taken.
When it does not match, the lambda expression corresponding to the next alter-
native is applied to the expression, forming a cascade of if-then-else constructs.
This results in a single lambda expression that implements the case construct,
and we apply it to the expression that we wanted to match against.

:: Expr = ... // Previous def.

| Case Expr [Alt] // case .. of ..

:: Alt = (==>) infix 0 Expr Expr // .. -> ..

compose ... // Previous def.

compose (Case e as) = compose (altsToLambda as @ e)

We translate the alternatives into lambda expressions below using the fol-
lowing rules. If the pattern consists of an application we do bracket abstraction
for each argument, just as we did for lambda expressions, in order to deal with
each subpattern recursively. Matching against an irrefutable pattern, such as
variables of tuples, always succeeds and we reuse the code of ski that does the
matching for lambda expressions. Matching basic values is done using ifEqual
that uses Clean’s built-in equalities for each basic type. We always add a default
alternative, using the mismatch function, that informs the user that none of the
patterns matched the expression.

altsToLambda :: [Alt] -> Expr

altsToLambda [] = Value mismatch

altsToLambda [f @ x ==> e:as] = altsToLambda [f ==> ski x e:as]

altsToLambda [Var x ==> e:_] = Var x --> e

altsToLambda [Tuple n ==> e:_] = Tuple n --> e

altsToLambda [Value dyn ==> th:as] = let el = altsToLambda as

in case dyn of

(i :: Int) -> Value (ifEqual i) @ th @ el

(c :: Char) -> Value (ifEqual c) @ th @ el

... // for all basic types

ifEqual :: a -> Dynamic | TC a & Eq a

ifEqual x = dynamic \th el y -> if (x == y) th (el y)

:: A.b: b (a^ -> b) a^ -> b

mismatch = dynamic raise "Pattern mismatch" :: A.a: a

Matching against a constructor contained in a dynamic takes more work.
For example, if we put Clean’s list constructor [:] in a dynamic we find that
it has type ∀a.a → [a] → [a], which is a function type. In Clean, one cannot
match closures or functions against constructors. Therefore, using the function
makeNode below, we construct a node that contains the right constructor by
adding dummy arguments until it has no function type anymore. The function



ifMatch uses some low-level code to match two nodes to see if the constructor of
the pattern matches the outermost constructor of the expression. If it matches,
we need to extract the arguments from the node. This is done by the applyTo
function, which decides how many arguments need to be extracted (and what
their types are) by inspection of the type of the curried constructor. Again,
we use some low-level auxiliary code to extract each argument while preserving
laziness.

altsToLambda [Value dyn ==> th:as] = let el = altsToLambda as

in case dyn of

... // previous definition for basic types

constr -> Value (ifMatch (makeNode constr))

@ (Value (applyTo dyn) @ th) @ el

ifMatch :: Dynamic -> Dynamic

ifMatch (x :: a) = dynamic \th el y -> if (matchNode x y) (th y) (el y)

:: A.b: (a -> b) (a -> b) a -> b

makeNode :: Dynamic -> Dynamic

makeNode (f :: a -> b) = makeNode (dynamic f undef :: b)

makeNode (x :: a) = dynamic x :: a

applyTo :: Dynamic -> Dynamic

applyTo ... // and so on, most specific type first...

applyTo (_ :: a b -> c) = dynamic \f x -> f (arg1of2 x) (arg2of2 x)

:: A.d: (a b -> d) c -> d

applyTo (_ :: a -> b) = dynamic \f x -> f (arg1of1 x)

:: A.c: (a -> c) b -> c

applyTo (_ :: a) = dynamic \f x -> f :: A.b: b a -> b

matchNode :: a a -> Bool // low-level code; compares two nodes.

argi ofn :: a -> b // low-level code; selects i th argument of n -ary node

Pattern matching against user defined constructors requires that the con-
structors are available from (i.e. stored in) the file system. Esther currently does
not support type definitions at the command line, and the Clean compiler must
be used to introduce new types and constructors into the file system. The ex-
ample below shows how one can write the constructors C, D, and E of the type
T to the file system. Once the constructors are available in the file system, one
can write command lines like \x -> case x of C y -> y; D z -> z; E -> 0
(for which type (T Int) → Int is inferred).

:: T a = C a | D Int | E

Start world =

let (_, w1) = writeDynamic "C" (dynamic C :: A.a: a -> T a) world

(_, w2) = writeDynamic "D" (dynamic D :: A.a: Int -> T a) w1

(_, w3) = writeDynamic "E" (dynamic E :: A.a: T a) w2

in w3



4.6 Overloading

Support for overloaded expressions within dynamics in Clean is not yet im-
plemented (e.g. one cannot write dynamic (==) :: A.a: a a -> Bool | Eq
a). Even when a future dynamics implementation supports overloading, it can-
not be used in a way that suits Esther. We want to solve overloading using
instances/dictionaries from the file system, which may change over time, and
which is something we cannot expect from Clean’s dynamic run-time system
out of the box.

Below is the Clean version of the overloaded functions == and one. We will
use these two functions as a running example.

class Eq a where (==) infix 4 :: a a -> Bool

class one a where one :: a

instance Eq Int where (==) x y = // low-level code to compare integers

instance one Int where one = 1

To mimic Clean’s overloading, we introduce the type O to differentiate be-
tween ‘overloaded’ dynamics and ‘normal’ dynamics. The type O, shown below,
has four type variables which represent: the variable the expression is overloaded
in (v), the dictionary type (d), the ‘original’ type of the expression (t), and the
type of the name of the overloaded function (n). Values of the type O consists
of a constructor O followed by the overloaded expression (of type d → t), and
the name of the overloaded function (of type n). We motivate the design of this
type later on in this section.

:: O v d t n = O (d -> t) n // Overloaded expression

== = dynamic O id "Eq" :: A.a: O a (a a -> Bool) (a a -> Bool) String

one = dynamic O id "one" :: A.a: O a a a String

instance_Eq_Int = dynamic \x y -> x == y :: Int Int -> Bool

instance_one_Int = dynamic 1 :: Int

The dynamic ==, in the example above, is Esther’s representation of Clean’s
overloaded function ==. The overloaded expression itself is the identity function
because the result of the expression is the dictionary of ==. The name of the
class is Eq. The dynamic == is overloaded in a single variable a, the type of the
dictionary is a → a → Bool as expected, the ‘original’ type is the same, and the
type of the name is String. Likewise, the dynamic one is Esther’s representation
of Clean’s overloaded function one.

By separating the different parts of the overloaded type, we obtain direct
access to the variable in which the expression is overloaded. This makes it easy to
detect if the overloading has been resolved (i.e. the variable no longer unifies with
∀a.a). By separating the dictionary type and the ‘original’ type of the expression,
it becomes easier to check if the application of one overloaded dynamic to another
is allowed (i.e. can a value of type O (a → b) be applied to a value of type
O a ).



To apply one overloaded dynamic to another, we combine the overloading
information using the P (pair) type as shown below in the function applyO.

:: P a b = P a b // Just a pair

applyO :: Dynamic Dynamic -> Dynamic

applyO ((O f nf) :: O vf df (a -> b) sf) ((O x nx) :: O vx dx a sx)

= dynamic O (\d_f d_x -> f d_f (x d_x)) (P nf nx)

:: O (P vf vx) (P df dx) b (P sf sx)

We use the (private) data type P instead of tuples because this allows us to
differentiate between a pair of two variables and a single variable that has been
unified with a tuple. Applying applyO to == and one yields an expression se-
mantically equal to isOne below. isOne is overloaded in a pair of two variables,
which are the same. The overloaded expression needs a pair of dictionaries to
build the expression (==) one. The ‘original’ type is a → Bool, and it is over-
loaded in Eq and one. Esther will pretty print this as: isOne :: a -> Bool |
Eq a & one a.

isOne = dynamic O (\(P d_Eq d_one) -> id d_Eq (id d_one)) (P "Eq" "one")

:: A.a: O (P a a) (P (a a -> Bool) a) (a -> Bool) (P String String)

Applying isOne to the integer 42 will bind the variable a to Int. Esther is
now able to choose the right instance for both Eq and one. It searches the file
system for the files named “instance Eq Int” and “instance one Int”, and applies
the code of isOne to the dictionaries after applying the overloaded expression to
42. The result will look like isOne10 in the example below, where all overloading
has been removed.

isOne42 = dynamic (\(P d_Eq d_one) -> id d_Eq (id d_one) 42)

(P d_Eq_Int d_one_Int) :: Bool

Although overloading is resolved in the example above, the plumbing/dict-
ionary passing code is still present. This will increase evaluation time, and it is
not clear yet how this can be prevented.

5 Related Work

We have not yet seen an interpreter or shell that equals Esther’s ability to use
pre-compiled code, and to store expressions as compiled code, which can be used
in other already compiled programs, in a type safe way.

Es [14] is a shell that supports higher-order functions and allows the user
to construct new functions at the command line. A UNIX shell in Haskell [15]
by Jim Mattson is an interactive program that also launches executables, and
provides pipelining and redirections. Tcl [16] is a popular tool to combine pro-
grams, and to provide communications between them. None of these programs
provides a way to read and write typed objects, other than strings, from and to
disk. Therefore, they cannot provide our level of type safety.

A functional interpreter with a file system manipulation library can also
provide functional expressiveness and either static or dynamic type checking of



part of the command line. For example, the Scheme Shell (ScSh) [17] integrates
common shell operations with the Scheme language to enable the user to use
the full expressiveness of Scheme at the command line. Interpreters for statically
typed functional languages, such as Hugs [18], even provide static type checking
in advance. Although they do type check source code, they cannot type check
the application of binary executables to documents/data structures because they
work on untyped executables.

The BeanShell [19] is an embeddable Java source interpreter with object
scripting language features, written in Java. It is able of type inference for vari-
ables and to combine shell scripts with existing Java programs. While Esther
generates compiled code via dynamics, the BeanShell interpreter is invoked each
time a script is called from a normal Java program.

Run-time code generation in order to specialize code at run-time to certain
parameters is not related to Esther, which only combines existing code.

6 Conclusions and Future Work

We have shown how to build a shell that provides a simple, but powerful strongly
typed functional programming language. We were able to do this using only
Clean’s support for run-time type unification and dynamic linking, albeit syntax
transformations and a few low-level functions were necessary. The shell named
Esther supports type checking and inference before evaluation. It offers applica-
tion, lambda abstraction, recursive let, pattern matching, and function defini-
tions: the basics of any functional language.

Additionally, infix operators and support for overloading make the shell easy
to use. The support for infix operators and overloading required the storage of
additional information in the file system. We have chosen to use file attributes
to store the infix information, and instances for an overloaded function f are
stored as files named “instance f Type”.

By combining compiled code, Esther allows the use of any pre-compiled pro-
gram as a function in the shell. Because Esther stores functions/expressions
constructed at the command line as a dynamic, it supports writing compiled
programs at the command line. Furthermore, these expressions written at the
command line can be used in any pre-compiled Clean program. The evaluation
of expressions using recombined compiled code is not as fast as using the Clean
compiler. Speed can be improved by introducing less combinators during bracket
abstraction, but it seams unfeasible to make Esther perform the same optimiza-
tions as the Clean compiler. In practice, we find Esther responsive enough, and
more optimizations do not appear worth the effort at this stage. One can al-
ways construct a Clean module using the same syntax and use the compiler to
generate a dynamic that contains more efficient code.

Further research will be done on a more elaborate typed file system, and
support for types and type definitions at the command line. Esther will be in-
corporated into our ongoing research on the development of a strongly typed
functional operating system.
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