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Abstract. Esther is the interactive shell of Famke, a prototype imple-
mentation of a strongly typed operating system written in the functional
programming language Clean. As usual, the shell can be used for manipu-
lating files, applications, data and processes at the command line. Special
about Esther is that the shell language provides the full basic function-
ality of a strongly typed lazy functional language. The shell type checks
each command line and only executes well-typed expressions. Files are
typed as well, and applications are simply files with a function type.
The implementation of the shell has some unusual aspects. The type
checking/inferencing performed by the shell is actually performed by
the hybrid static/dynamic type system of Clean. The shell behaves like
an interpreter, but it actually executes a command line by combining
existing code of functions on disk. Cleans dynamic linker is used to store
(and retrieve) any expression (both data and code) with its type on disk.
This linker is also used to communicate values of any type, e.g., data,
closures, and functions (i.e.compiled code), between running applications
in a type safe way.

The shell combines the advantages of interpreters (direct response) and
compilers (statically typed, fast code). Applications (compiled functions)
can be used, in a type safe way, in the shell, and functions defined in the
shell can be used by any compiled application.

1 Introduction

Functional programming languages like Haskell [1] and Clean [2, 14] offer a very
flexible and powerful static type system. Compact, reusable, and readable pro-
grams can be written in these languages while the static type system is able
to detect many programming errors at compile time. However, this works only
within a single application.

Independently developed applications often need to communicate with each
other. One would like the communication of objects to take place in a type
safe manner as well. And not only simple objects, but objects of any type,
including functions. In practice, this is not easy to realize: the compile time type
information is generally available to the compiled executable at run-time. In
real life therefore, applications often only communicate simple data types like



streams of characters, ASCII text, or use some ad-hoc defined (binary) format.
Although more and more applications use XML to communicate data together
with the definitions of the data types used, most programs do not support run-
time type unification, cannot use previously unknown data types, or cannot
exchange functions (i.e. code) between different programs in a type safe way.
This is mainly because the used programming language has no support for such
things.

Programming languages, especially pure and lazy functional languages like
Clean and Haskell, provide good support for abstraction (e.g. subroutines, over-
loading, polymorphic functions), composition (e.g. application, higher-order func-
tions, module systems), and verification (e.g. strong type checking and inference).

In contrast, command line languages used by operating system shells usually
have little support for abstraction, composition, and especially verification. They
do not provide higher-order subroutines, complex data structures, type inference,
or even type checking at all before evaluation. Given their limited set of types
and their specific area of application, this has not been recognized as a serious
problem in the past.

We think that command line languages can benefit from some of the pro-
gramming language facilities, as this will increase their flexibility, reusability
and security. We have previously done research on reducing run-time errors (e.g.
memory access violations, type errors) in operating systems by implementing a
micro kernel in Clean that provides type safe communication of any value of
any type between functional processes, called Famke (FunctionAl Micro Kernel
Experiment) [15]. This has shown that (moderate) use of dynamic typing [3],
in combination with Clean’s dynamic run-time system and dynamic linker [4,
16], enables processes to communicate any data (and even code) of any type in
a type safe way.

During the development of a shell/command line interface for our prototype
functional operating system it became clear that a normal shell cannot really
make use (at run-time) of the type information derived by the compiler (at
compile-time). To reduce the possibility of run-time errors during execution of
scripts or command lines, we need a shell that supports abstraction and verifi-
cation (i.e. type checking) in the same way as the Clean compiler does. In order
to do this, we need a better integration of compile-time (i.e. static typing) and
run-time (i.e. interactivity) concepts.

Both the shell and micro kernel are built on top of Clean’s hybrid static/dy-
namic type system and its dynamic I/O run-time support. It allows programmers
to save any Clean expression, i.e., a graph that can contain data, references to
functions, and closures, to disk. Clean expressions can be written to disk as
a dynamic, which contains a representation of their (polymorphic) static type,
while preserving sharing. Clean programs can load dynamics from disk and use
run-time type pattern matching to reintegrate it into the statically typed pro-
gram. In this way, new functionality (e.g., plug-ins) can be added to a running
program in a type safe way.



The shell is called Esther (Extensible Shell with Type cHecking ExpeRi-
ment), and is capable of:

— reading an expression from the console, using Clean’s syntax for a basic,
but complete, functional language. It offers application, lambda abstraction,
recursive let, pattern matching, function definitions, and even overloading;

— using compiled Clean programs as typed functions at the command line;

— defining new functions, which can be used by other compiled Clean programs
(without using the shell or an interpreter);

— extracting type information (and indirectly, code) from dynamics on disk;

— type checking the expression, and solving overloading, before evaluation;

— constructing a new dynamic containing the correct type and code of the
expression.

First, we introduce the static/dynamic hybrid type system and dynamic I/O of
Clean in Sect. 2. In Sect. 3 we give an overview of the expressive power of the
shell command language using tiny examples of commands that can be given. In
Sect. 4 we show how to construct a dynamic for each kind of subexpression such
that it has the correct semantics and type, and how to compose them in a type
checked way. Related work is discussed in Sect. 5 and we conclude and mention
future research in Sect. 6.

2 Dynamics in Clean

Clean offers a hybrid type system: in addition to its static type system it also has
a (polymorphic) dynamic type system [3,4,16]. A dynamic in Clean is a value of
static type Dynamic, which contains an expression as well as a representation of
the (static) type of that expression. Dynamics can be formed (i.e. lifted from the
static to the dynamic type system) using the keyword dynamic in combination
with the value and an optional type. The compiler will infer the type if it is
omitted?!.

dynamic 42 :: Int?

dynamic map fst :: A%a b: [(a, b)] — [a]

Function alternatives and case patterns can pattern match on values of type
Dynamic (i.e. bring them from the dynamic back into the static type system).
Such a pattern match consist of a value pattern and a type pattern. In the
example below, matchInt returns Just the value contained inside the dynamic if
it has type Int; and Nothing if it has any other type. The compiler translates a
pattern match on a type into run-time type unification. If the unification fails,
the next alternative is tried, as in a common (value) pattern match.

! Types containing universally quantified variables are currently not inferred by the
compiler. We will not always write these types for ease of presentation.

2 Numerical denotations are not overloaded in Clean.

3 Clean’s syntax for Haskell’s forall.



::*Maybe a = Nothing | Just a

matchInt :: Dynamic — Maybe Int
matchInt (x :: Int) = Just x
matchInt other = Nothing

A type pattern can contain type variables which, provided that run-time uni-
fication is successful, are bound to the offered type. In the example below,
dynamicApply tests if the argument type of the function £ inside its first argument
can be unified with the type of the value x inside the second argument. If this is
the case then dynamicApply can safely apply £ to x. The type variables a and b
will be instantiated by the run-time unification. At compile time it is generally
unknown what type a and b will be, but if the type pattern match succeeds, the
compiler can safely apply £ to x. This yields a value with the type that is bound
to b by unification, which is wrapped in a dynamic.

dynamicApply :: Dynamic Dynamic — Dynamic
5

dynamicApply (f :: a—b) (x :: a) = dynamic £ x :: b°

dynamicApply daf dx = dynamic "Error: cannot apply"

Type variables in dynamic patterns can also relate to a type variable in the
static type of a function. Such functions are called type dependent functions [3].
A caret (") behind a variable in a pattern associates it with the type variable with
the same name in the static type of the function. The static type variable then
becomes overloaded in the predefined TC (or type code) class. The TC class is used
to ‘carry’ the type representation. In the example below, the static type variable
t will be determined by the (static) context in which it is used, and will impose
a restriction on the actual type that is accepted at run-time by matchDynamic. It
yields Just the value inside the dynamic (if the dynamic contains a value of the
required context dependent type) or Nothing (if it does not).

matchDynamic :: Dynamic — Maybe t | TC t”

matchDynamic (x :: t7) = Just x

matchDynamic other = Nothing

2.1 Reading and Writing of Dynamics

The dynamic run-time system of Clean supports writing dynamics to disk and
reading them back again, possibly in another application or during another ex-
ecution of the same application. This is not a trivial feature, since Clean is not
an interpreted language: it uses compiled code. Since a dynamic may contain
unevaluated functions, reading a dynamic implies that the corresponding code
produced by the compiler has to be added to the code of the running applica-
tion. To make this possible one needs a dynamic linker. Furthermore, one needs

4 Defines a new data type in Clean, Haskell uses the data keyword.

5 Clean separates argument types by whitespace, instead of —.

5 The type b is also inferred by the compiler.

" Clean uses | to denote overloading. In Haskell this would be written as (TC t) =
Dynamic — Maybe t.



to to be able to retrieve the type definitions and function definitions that are
associated with a stored dynamic. With the ability to read and write dynamics,
type safe plug-ins and mobile code can relatively easy be realized in Clean.

Writing a dynamically typed expression to file A dynamic of any value
can be written to a file on disk using the writeDynamic function.

writeDynamic :: String Dynamic *®World — (Bool, *World)

In the producer example below a dynamic is created which consists of the appli-
cation of the function sieve to an infinite list of integers. This dynamic is then
written to file using the writeDynamic function. Evaluation of a dynamic is done
lazily. The producer does not demand the result of the application of sieve to the
infinite list. As a consequence, the application in its unevaluated form is written
to file. The file therefore contains a calculation that will yield a potential infinite
integer list of prime numbers.

producer :: *World — *World
producer world = writeDynamic "primes" (dynamic sieve [2..]) world
where

sieve :: [Int] — [Int]
sieve [prime:rest]| = [prime:sieve filter]
where

filter = [h \\ h« rest | h mod prime # 0]

When the dynamic is stored to disk, not only the dynamic expression and its
type has to be stored somewhere. To allow the dynamic to be used as a plug-in
by any other application additional information has to be stored as well. One
also has to store:

— the code corresponding to the function definitions needed for the evaluation
of the dynamic expression;

— the definitions of all the types involved needed to check type consistency
when matching the type of the dynamic against the type specified in the
dynamic pattern match.

The required code and type information will be generated by the compiler and is
stored in a special data base when an application is created. The code and type
information is created and stored once at compile-time, while the dynamic value
and dynamic type are created and stored may be several times at run-time. The
run-time system has to be able to find both type of information when a dynamic
is read in.

8 This is a uniqueness attribute, indicating that the world environment is passed
around in a single threaded way. Unique values allow safe destructive updates and
are used for I/O in Clean. The value of type World corresponds with the hidden
state of the I0 monad in Haskell.



Reading a dynamically typed expression from file A dynamic can be read
from disk using the readDynamic function.

readDynamic :: String *World — (Bool, Dynamic, *World)

This readDynamic function is used in the consumer example below to read the
earlier stored dynamic. The dynamic pattern match checks whether the dynamic
expression is an integer list. In case of success the first 100 elements are taken,
in this case of the potential infinite list of sieve numbers. In case that the read
in dynamic is not of the indicated type, the consumer aborts. Actually, it is not
possible to do something with a read-in dynamic (besides passing it around to
other functions or saving it to disk again), unless the dynamic matches some
type or type scheme specified in the pattern of the receiving application.

consumer :: *World — [Int]

consumer world

#° (dyn, world) = readDynamic "primes" world
= take 100 (extract dyn)

where
extract :: Dynamic — [Int]
extract (list :: [Int]) = list

extract else = abort "dynamic type check failed"

To turn a dynamically typed expression into a statically typed expression,
the following steps are performed by the run-time system of Clean:

The type of the dynamic and the type specified in the pattern are unified
with each other. If the unification fails, the dynamic pattern match also fails.
— If the unification is successful, it is checked that the type definitions of equally
named types coming from different applications are equal as well. If one of the
involved type definitions differs, the dynamic pattern match fails. Equally
named types are equivalent iff their type definitions are syntactically the
same (modulo alpha-conversion and the order of algebraic data constructors).
If all patterns match, the corresponding function alternative is chosen and
evaluated.

— It is possible that the evaluation of the now statically typed expression dy-
namic expression is required. In that case, the expression is reconstructed
out of the information stored in the dynamic on disk, the corresponding code
needed for the evaluation of the functions is added to the running applica-
tion, after which the expression can be evaluated.

Running progl and prog2 in the example below will write a function and a
value to dynamics on disk. Running prog3 will create a new dynamic on disk that
contains the result of ‘applying’ (using the dynamicApply function) the dynamic
with the name “function” to the dynamic with the name “value”. The closure
40 + 2 will not be evaluated until the * operator needs it. In this case, because
the ‘dynamic application’ of df to dx is lazy, the closure will not be evaluated
until the value of the dynamic on disk named “result” is needed. Running progé

9 Clean’s ‘do-notation’ for environment passing.



tries to match the dynamic dr, from the file named “result”, with the type Int.
After this succeeds, it displays the value by evaluating the expression, which is
semantically equal to let x = 40 + 2 in x * x, yielding 1764.

progl world = writeDynamic "function" (dynamic * :: Int Int -> Int) world
prog2 world = writeDynamic "value" (dynamic 40 + 2) world
prog3 world = let (okl, df, worldl) = readDynamic "function" world

(ok2, dx, world2) = readDynamic "value" worldl
in writeDynamic "result" (dynamicApply df dx) world2

prog4 world = let (ok, dr, worldl) = readDynamic "result" world

in (case dr of (x :: Int) -> x, worldl)

A dynamic will be read in lazily after a successful run-time unification (trig-
gered by a pattern match on the dynamic). The dynamic linker will take care of
the actual linking of the code to the running application and the checking of the
type definitions referenced by the dynamic being read. The dynamic linker canis
able to find the code and type definitions in the data base in which they are
stored by the compiler. The amount of data and code that the dynamic linker
will link depends on how far the dynamic expression is evaluated.

Dynamics written by one application program can safely be read by any
other application. Only when the types match, it can be plugged in such and
the application can do something with it. In this way two Clean applications can
communicate values of any type they like, including function types, in a type
safe manner.

3 Overview of the Shell

Like any other shell, our Esther shell enables users to start pre-compiled pro-
grams and provide simple ways to combine multiple programs, e.g., pipelining
and concurrent execution, and it supports execution-flow controls, e.g., if-then-
else constructs. It provides a way to interact with the underlying operating
system and the file system, using a textual command line/console interface.

A special feature of the Esther shell is that it offers a complete typed func-
tional programming language with which programs can be constructed. The
shell type checks a command line before performing any actions. Traditional
shells provide very limited error checking before executing the given command
line. This is mainly because the applications mentioned at the command line are
practically untyped because they work on, and produce, streams of characters.
The intended meaning of these streams of characters varies from one program
to the other. The choice to make our shell language typed also has consequences
for the underlying operating system and file system: they should be able to deal
with types as well.

In this section we give a brief overview of the functionality of the Esther shell
and the underlying operating system and file system it relies on.



3.1 Famke; a Type Safe Micro Kernel

A shell has to be able to start applications and to provide a way to connect appli-
cations (e.g. by creating a pipe-line) such that they can communicate. Since our
shell is typed, process communication should be type safe as well. The Windows
Operating System that we use does not provide such a facility. We therefore have
created a micro kernel on top of Windows. Our micro-kernel, Famke, provides
Clean programs with ways to start new (possibly distributed running) processes,
and the ability to communicate any value in a type safe way. It should be no sur-
prise that Famke uses dynamics for this purpose. Dynamics can be send between
applications as strings, which makes it possible to use conventional interprocess
communication media such as TCP/IP for the actual communication (see [16]).

3.2 A Typed File System

A shell works on applications and data stored on disk. Our shell is typed, it can
only work if all files it operates on are typed as well. We therefore assume that
all files have a proper type.

For applications written in Clean this can be easily realized. Any data, func-
tion, or even any large complete Clean application (which is a function as well)
can be written as dynamic to disk, thus forming a rudimentary typed file system.

Applications written in other languages are usually untyped. We can in prin-
ciple incorporate such an application into in our typed file system, by writing a
properly typed Clean wrapper application around it, which is then stored again
as dynamic on disk.

We assume that all documents and compiled applications are stored in a
dynamic of appropriate type. Applications in our file system are just dynamics
that contain a function type. This typed file system makes it possible for the
shell to ensure, for example, that it is type safe to apply a printing application
(print :: WordDocument — PostScript) to a document (myDocument :: WordDocument).
The Clean dynamic type system will ensure that the types will indeed fit.

Normal directory manipulation operations still apply, but one no longer reads
bytes from a file. Instead, one reads whole files (only conceptually, the dynamic
linker reads it lazily), and one can pattern match on the dynamic to check the
type. This removes the need for parsers and pretty printers, as data structures
are stored directly.

The shell contains no built-in commands. The commands it knows are de-
termined by the files (dynamics) stored on disk. To find a command, the shell
searches its directories in a specific order as defined in its search paths, looking
for a file with that name.

The shell is therefore pretty useless unless a collection of useful dynamics
has been stored. When the system is initialized, a standard file system is created
(see Fig. 1) in a Windows folder. It contains:

— almost all functions from the Clean standard environment!?, such as +, -,
map, and foldr (stored as dynamic on disk);

10 Gimilar to Haskell’s Prelude.



@ sStdS$Env [_ ol x]
File FEdit Wiew Favorites Tools Help | o
Address [) D:-\Hilde Filesystem\programs\$Std$Env Jid Go
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T Wlde :I . instance$ cne$ $Real u.dyn 1 KB Clean Dynamic
£ Hilde Filesystem irﬁlms rem$ $int u.dyn 1 KB Clean Dynamic
£ boot instance$ to$String$ $Char.u.dyn 1 KB Clean Dynamic
s instance$ to$String$ $int_u_dyn 1 KB Clean Dynamic
= instances to$Strings $Real u_dyn 1 KB Clean Dynamic
instance$ rern$ $Charu.dyn 1 KB Clean Dynamic
@ instance$ zero$ $int_u.dyn 1 KB Clean Dynamic
= instances zern$ $Real u dyn 1 KB Clean Dynamic
@isSEven_u_dyn 1 KB Clean Dynamic
| is$Odd uu_dyn 1 KB Clean Dynamic
iterate u.dyn 1 KB Clean Dynamic
last u dyn 1 KB Clean Dynamic
_@Iengh_u_dyn 1 KB Clean Dynamic
map .u.dyn 1 KB Clean Dynamic
@ not_u_dyn 1 KB Clean Dynamic
@ one_udyn 1 KB Clean Dynamic
or.u.dyn 1 KB Clean Dynamic
rem.7.dyn 1 KB Clean Dynamic
removeS$Al u.dyn 1 KB Clean Dynamic s
repeat u_dyn 1 KB Clean Dynamic
L] _@repean.u.dyn 1 KB Clean Dynamic
reverse u.dyn 1 KB Clean Dynamic ecy
_ Cid | [v]
[107 objects [325kB [5§ My Computer A

Fig. 1. A screenshot of the typed file system; implemented as dynamic on disk.

— common commands to manipulated the file system (mkdir, rmdir, and the
like);

— commands to create processes directly based on the functionality offered by
Famke (famkeNewProcess, and the like).

All folders are common Window folders, all files contain dynamics created
by Clean applications using the writeDynamic-function. The implementation of
dynamics on disk is organized in such a way ([16]]) that a user can safely rename,
copy or delete files, either using the Esther shell or directly using Windows.

3.3 Esther; a Type Checking Shell

The last example of Sect. 2. shows how one can store and retrieve values, expres-
sions, and functions of any type to and from the file system. It also shows that
the dynamicApply function can be used to type check an application at run-time
using the static types stored in dynamics. Combining both in an interactive ‘read
expression — apply dynamics — evaluate and show result’ loop gives a very simple
shell that already supports the type checked run-time application of programs
to documents.
Esther performs the following steps in a loop:

— it reads a string from the console and parses it like a Clean expression. It
supports denotations of Clean’s basic and predefined types, application, infix
operators, lambda abstraction, overloading, let(rec), and case expressions;



— identifiers that are not bound by a lambda abstraction, a let(rec), or a case
pattern are assumed to be names of dynamics on disk, and they are read
from disk;

— type checks the expression using dynamic run-time unification and type pat-
tern matching, which also infers types;

— if the command expression does not contain type errors, Esther displays
the result of the expression and the inferred type. Esther will automatically
be extended with any code necessary to display the result (which requires
evaluation) by the dynamic linker.

For instance, if the user types in the following expression:
> map ((+) 1) [1..10]
the shell reacts as follows:

[2,3,4,5,6,7,8,9,10,11] :: Int
>

Roughly the following happens. The shell parses the expression. The expres-
sion consists of typical Clean-like syntactical constructs (like (, ), and [ .. ]),
constants (like 1 and 10), and identifiers (like map and +).

The names map and + are unbound (do not appear in the left hand side
of a let, case, lambda expression, or function definition) in this example, and
the shell therefore assumes that they are names of dynamics on disk. They are
read from disk (with help of readDynamic), practically extending its functional-
ity with these functions, and inspects the types of the dynamics. It uses the
types of map (let us assume that the file map contains the type that we expect:
Va b: (a—1b) [a] — [b]), + (for simplicity, let us assume: Int Int — Int) and
the list comprehension (which has type: [Int]) to type-check the command line.
If this succeeds, which it should given the types above, the shell applies the par-
tial application of + with the integer one to the list of integers from one to ten,
using the map function. The application of one dynamic to another is done using
the dynamicApply function from Section 2, extended with better error reporting.
How this is done exactly, is explained in more detail in Sect.0 4. With the help
of the dynamicApply function, the shell constructs a new function that performs
the computation map ((+) 1) [1..10]. This function uses the compiled code of
map, +, and the dotdot expression.

Our shell can therefore be regarded as a hybrid interpreter/compiler, where
the command line is interpreted /compiled to a function that is almost as efficient
as the same function written directly in Clean and compiled to native code. If
functions like map and + are used in other commands later on, the dynamic
linker will notice that they are already have been used and linked in, and it will
reuse their code. As a consequence, the shell will react even quicker, because no
dynamic linking is required anymore in such a case.



3.4 The Esther Command Language

Here follow some command line examples with an explanation of how they are
handled by the shell. Figure 2 show two example sessions with Esther. The right
Esther window in Fig. 2 shows the same directory as the Windows Explorer
screenshot in Fig. 1. We explain Esther’s syntax by example below. Like a com-
mon UNIX shell, the Esther shell prompts the user with a ">" for typing in a
new command.

[E8 D:\Hilde Filesystem\boot bat N (=S|
/home> 4@ + 2 ;I

2 :: Int

t/home> £zt

S . ca D-\Hilde Flesystem\boot bat
:/home> map fst E:/home) cd "/programs/StdEnv"
ap %~ == [Ca. b»] -2 [al NIT :: UNIT
:/home’> 18 + "1V 2:/prograns/8tdEnv> 1z "

Cannot apply + 18 :: Int -3 Int it

fo 1T i {#Char} =xx if

*/home’ inc instance one Int
id id (. a —>a ! +a & one a instance one Real
s/home? NF x —» F (F x2) 3> (twice? infixl 9 not
"BICK*BI Iy :z{a->a->a->a (+> infixl 6
:shome? inc twice 1.14 instance + Int
.14 :: Real . . (==) infix 4
t/home> head list = case list of [x:ixs] -2 x instance == Int
(N (B K ID) mismateh I :: [al -> a nap

?:-home> head [1] length

e Pattern mismatch in case %% st

H@:/home> fac n = if (n <= 1> 1 (n * fac <n - 11> nd

EstherS (C' IF (C* (B* .+. .+, _+.2 1 1> 1> (8" = l|l<g&) infixe 3
Sl L*02)) i Int -3 Int

um
nii:/home> fac 18 (11> dinfixe 2
3628888 :: Int ilter

n2: home> famkeMewProcess "localhost" Esther euverse
KFamkeId “131.174.32.2085" 2> :: Famkeld ero

13: home >

inztance zero Int
i ™

Fig. 2. A combined screenshot of the two concurrent sessions with Esther

Expressions Here are some more examples of expressions that speak for them-
selves. Application:

> map
map :: (a -> b) [a] -> [b]
>

Expressions that contain type errors:

> 40 + I|5ll

*x* cannot apply + 40 :: Int -> Int
to "B" :: {#Char} *x*

>



Saving Expressions to Disk Expressions can be stored as dynamics on disk
using >>:

> 2 >> two
2 :: Int
> two

2 Int

> (+) 1 > inc

+ 1 :: Int -> Int
> inc 41

42 :: Int

Overloading Esther resolves overloading in almost the same way as Clean. It is
currently not possible to define new classes at the command line, but they can be
introduced using a simple Clean program that stores the class as an overloaded
function. It is also not possible to save overloaded command-line expressions
using the >> described above. Arithmetic operations are overloading in Esther,
just as they are in Clean:

> +
+::aa->al +a

> one

one :: a | one a

> (+) one

(+) one :: a->a | + a & one a

Function Definitions One can define new functions at the command line:

> dec = (-) 1
dec :: Int -> Int

This defines a new function with the name dec as the partial application of
the - function to the integer one. This function is written to disk in a file with
the same name (dec) such that from now on it can be used in other expressions.

> facn =if (n < 2) 1 (n * fac (dec n))
S (CCIF (C*<I2)1) (8 *xI (B (S .+. .+.) (C° .+. .+. .+.)))
:: Int -> Int

The factorial function is constructed by Esther using combinators (see Sect.
4), which explains why Esther responds in this way.

Not only is it possible to reuse such functions in the shell itself. Any function
defined in the shell can be used by any other Clean application. Such a function



is a dynamic and can be used (read in, dynamically linked, copied, renamed,
communicated across a network) as usual.

Notice that dynamics are read in before executing the command line, so it is
not possible to change the meaning of a part of the command line by overwriting
a dynamic.

Lambda Expressions It is possible to define lambda expressions, just as in
Clean.

> (\fx-—>f (fx)) () 1O
2 :: Int

> (\x x -> x) "first-x" "second-x"
"second-x" :: String

Let Expressions To introduce sharing and cycles (infinite data structures),
one can use let expressions.

> let x =4 % 11 in x + X
88 :: Int

> let ones = [1:ones] in take 100 ones
[1,2,3,4,5,6, . . . ,100] :: [Int]

Case Expressions It is possible to do a simple pattern match using case ex-
pressions. Nested patterns are not yet supported, but one can always nest case
expressions by hand. An exception Pattern mismatch in case is raised if a
case fails.

> hd list = case list of [x:xs] -> x
B (\ (B K I)) mismatch I :: [a] -> a

> hd [1..]
1 :: Int

> hd []
*** Pattern mismatch in case *x*x

> sum 1 = case 1 of [x:xs] -> x + sum xs; [] -> 0
B (\ (C* (B .+.) I (B .+. .+.))) (\ O mismatch) I
[Int] -> Int

The interpreter understands Clean denotations for basic types like Int, Real,
Char, String, Bool, tuples, and lists. But how can one perform a pattern match
on a user defined constructor defined in some application? It is not (yet) possible



to define new types in the shell itself. But one can define the types in any Clean
module, and construct an application writing the constructors as dynamic to
disk.

module NewType
:: Tree a = Node (Tree a) (Tree a) | Leaf a

Start world
f (ok, world) = writeDynamic "Node"
(dynamic Node :: Va: (Tree a) (Tree a) — Tree a) world
# (ok, world) = writeDynamic "Leaf"
(dynamic Leaf :: Va: a — Tree a) world
f (ok, world) = writeDynamic "myTree"
(dynamic Node (Leaf 1) (Leaf 2)) world
= world

These constructors can then be used by the shell to pattern match on a value
of that type.

> leftmost tree = case tree of Leaf x -> x; Node 1 r -> leftmost 1
leftmost :: (Tree a) —-> a

> leftmost (Node (Node myTree myTree) myTree)
1 :: Int

Typical Shell Commands Esther’s search path also contains a directory with
common shell commands, such a file system operations:

> mkdir "foo"
UNIT :: UNIT

Esther displays UNIT because mkdir has type CleanInlineWorld -; World, i.e., has
a side effect, but no result. Functions that operate on the Clean’s World state are
applied to the world by Esther.

More operations on the file system:

> cd "foo"
UNIT :: UNIT

> 42 >> bar
42 :: Int

> ls nn

bar
" :: {#Char}



Processes Examples of process handling commands:

> famkeNewProcess "localhost" Esther
{FamkeId "131.174.32.197" 2} :: Famkeld

This starts a new, concurrent, incarnation of Esther at the same computer.
IP addresses can be used to start processes on other computers. famkeNewProcess
yields a new process id (of type FamkeId). It is necessary to have the Famke
running on the other computer, e.g., by starting a shell there, to be able to start
a process on another machine. Starting Esther on another machine does no give
remote access, the console of the new incarnation of Esther is displayed on the
other machine.

3.5 Example: an Application that Uses a Shell Function

Figure 3 shows a sequence of screenshots of a calculator program written in
Clean. Initially, the calculator has no function buttons. Instead, it has buttons
to add and remove function buttons. These will be loaded dynamically after
adding dynamics that contain tuples of String and Real Real — Real.

(1] [e2rab™23 I

—————
=+ DA\Hilde Flesystem\boot_bat

s-home> (V2xa—h A = a — b = bh> >>

27, ~a b —> 2_ T2a—h2”’
(2=a—h"2". C* (B® —> (B® == 2 I> (8" :z {{#Char>,. Real —> Real —> Real>

=~home >

Open HE
Look in: I_'.l home L] <= 5 ER-

g (=22 b2 u dyni
r=4

Fig. 3. A combined screenshot of the calculator in action and Esther

The lower half of Fig. 3 shows a command line in the Esther shell that writes
such a tuple as a dynamic named “2a-b2.u.dyn” to disk.

Its button name is 2*a-b~2 and the functionis \a b— 2.0 * a - b * b. Press-
ing the Add button on the calculator opens a file selection dialog, shown at the



bottom of Fig. 3. After selecting the dynamic named “2a-2b.u.dyn”, it becomes
available in the calculator as the button 2xa-b~2, and it is applied to 8 and 3
yielding 7.

The calculator itself is a separately compiled Clean executable that runs
without using Esther. Alternatively, one can write the calculator, which has
type [(String, Real Real — Real)] *World — xWorld, to disk as a dynamic.
The calculator can then be started from Esther, either in the current shell or as
a separate process.

4 Implementation of Esther using Clean Dynamic Type
Checking

In this section, we explain how one can use the type unification of Clean’s dy-
namic run-time system to type check a shell command, and we show how the
corresponding Clean expression is translated effectively using combinations of
already existing compiled code.

Obviously, we could have implemented type checking ourselves using one of
the common algorithms involving building and solving a list of type equations.
Instead, we decided to use Clean’s dynamic run-time unification, for this has
several advantages:

— Clean’s dynamics allow us to do type safe and lazy I/O of expressions;

— we do not need to convert between the (hidden) type representation used by
dynamics and the type representation used by our type checking algorithm;

— it shows whether Clean’s current dynamics interface is powerful enough to
implement basic type inference and type checking;

— we get future improvements of Clean’s dynamics interface for free (e.g.
uniqueness attributes or overloading).

The parsing of a shell command line is trivial and we will assume here that
the string has already been successfully parsed.

In order to support a basic, but complete, functional language in our shell
we need to support function definitions, lambda, let(rec), and case expressions.

We will introduce the syntax tree piecewise and show for each kind of ex-
pression how to construct a dynamic that contains the corresponding Clean
expression and the type for that expression. Names occurring free in the com-
mand line are read from disk as dynamics before type checking. The expression
can contain references to other dynamics, and therefore to the compiled code of
functions, which will be automatically linked by Clean’s run-time system.

4.1 Application

Suppose we have a syntax tree for constant values and function applications that
looks like:

: Expr = (@) infixl 9'' Expr Expr //*? Application

11 This defines an infix constructor with priority 9 that is left associative.
12 This a Clean comment to end-of-line, like Haskell’s —-.



| Value Dynamic // Constant or dynamic value from disk

We introduce a function compose, which constructs the dynamic containing a
value with the correct type that, when evaluated, will yield the result of the
given expression.

compose :: Expr — Dynamic
compose (Value d) =d
compose (f @ x) = case (compose f, compose x) of
(f ::a—b, x :: a) >dynamic f x :: b
(af, dx) — raise'® ("Cannot apply " +++ typeOf df

+++ " to " +++ typeOf dx)
typeOf :: Dynamic — String
typeOf dyn = toString (typecodeOfDynamic dyn) // pretty print type

Composing a constant value, contained in a dynamic, is trivial. Composing an
application of one expression to another is a lot like the dynamicApply function
of Sect. 2. Most importantly, we added error reporting using the type0f function
for pretty printing the type of a value inside a dynamic.

4.2 Lambda Expressions

Next, we extend the syntax tree with lambda expressions and variables.

: Expr = --- // Previous def.
| (—) infixr 0 Expr Expr // Lambda abstraction: \ .. — ..
| Var String // Variable
I sSITKII // Combinators

At first sight, it looks as if we could simply replace a Lambda constructor in the
syntax tree with a dynamic containing a lambda expression in Clean:

compose (Var x — e) = dynamic (\y — composeLambda x y e :: ?)

The problem with this approach is that we have to specify the type of the lambda
expression before the evaluation of composeLambda. Furthermore, composeLambda
will not be evaluated until the lambda expression is applied to an argument. This
problem is unavoidable because we cannot get ‘around’ the lambda. Fortunately,
bracket abstraction [17] solves both problems.

Applications and constant values are composed to dynamics in the usual way.
We translate each lambda expression (—) to a sequence of combinators (S, K,
and I) and applications, with the help of the function ski.

compose - - - // Previous def.

compose (x — e) = compose (ski x e)

compose I = dynamic \x — x

compose K = dynamic \x y — x

compose S =dynamic \f g x —f x (g x)

13 For easier error reporting, we implemented imprecise user-defined exceptions & la
Haskell [26]. We used dynamics to make the set of exceptions extensible.



ski :: Expr Expr — Expr // common bracket abstraction

ski x (y — e) =ski x (ski y e)

ski (Var x) (Var y) M x=y=1

ski x (fey) =S@skixf@skixy
ski x e =K@e

Composing lambda expressions uses ski to eliminate the Lambda and Variable
syntax constructors, leaving only applications, dynamic values, and combinators.
Composing a combinator simply wraps its corresponding definition and type as
a lambda expression into a dynamic.

Special combinators and combinator optimization rules are often used to im-
prove the speed of the generated combinator code by reducing the number of
combinators [18]. One has to be careful not to optimize the generated combi-
nator expressions in such a way that the resulting type becomes too general.
In an untyped world this is allowed because they preserve the intended seman-
tics when generating untyped (abstract) code. However, our generated code is
contained within a dynamic and is therefore typed. This makes it essential that
we preserve the principal type of the expression during bracket abstraction.
Adding common eta-conversion, for example, results in a too general type for
Var "f" — Var "x" — f x:Va: a — a, instead of: Va b: (a—b) —a—b. Such
optimizations might prevent us from getting the principal type for an expression.
Simple bracket abstraction using S, K, and I, as performed by ski, does preserves
the principal type [19].

Code combined by Esther in this way is not as fast as code generated by the
Clean compiler. Combinators introduced by bracket abstraction are the main rea-
son for this slowdown. Additionally, all applications are lazy and not specialized
for basic types. However, these disadvantages only hold for the small (lambda)
functions written at the command line, which are mostly used for plumbing. If
faster execution is required, one can always copy-paste the command line into a
Clean module that writes a dynamic to disk and running the compiler.

In order to reduce the number of combinators in the generated expression,
our current implementation uses Diller’s algorithm C [20] without eta-conversion
in order to preserve the principal type, while reducing the number of generated
combinators from exponential to quadratic. Our current implementation seems
to be fast enough, so we did not explore further optimizations by other bracket
abstraction algorithms.

4.3 Irrefutable Patterns

Here we introduce irrefutable patterns, e.g. (nested) tuples, in lambda expres-
sions. This is a preparation for the upcoming let(rec) expressions.

:: Expr = --- // Previous def.
| Tuple Int // Tuple constructor

compose - - - // Previous def.
compose (Tuple n) = tupleConstr n

14 1f this guard fails, we end up in the last function alternative.



tupleConstr :: Int — Dynamic

tupleConstr 2 = dynamic Ax y — (x, y)
tupleConstr 3 = dynamic M\x y z — (%, y, z)
tupleConstr --- // and so on...'®

ski :: Expr Expr — Expr

ski (f @x) e=gskif (x — e)

ski (Tuple n) e = Value (matchTuple n) @ e
ski --- // previous def.

matchTuple :: Int — Dynamic

matchTuple 2 = dynamic Af t — f (fst t) (snd t)
matchTuple 3 = dynamic Mf t —f (fst3 t) (snd3 t) (thd3 t)
matchTuple --- // and so on...

We extend the syntax tree with Tuple m constructors (where n is the num-
ber of elements in the tuple). This makes expressions like Tuple 3 @ Var "x" @
Var "y" @ Var "z" — Tuple 2 @ Var "x" @ Var "z" valid expressions. This ex-
ample corresponds with the Clean lambda expression A(x, y, z) — (x, z).

When the ski function reaches an application in the left-hand side of the
lambda abstraction, it processes both sub-patterns recursively. When the ski
function reaches a Tuple constructor it replaces it with a call to the matchTuple
function. Note that the right-hand side of the lambda expression has already been
transformed into lambda abstractions, which expect each component of the tuple
as a separate argument. We then use the matchTuple function to extract each
component of the tuple separately. It uses lazy tuple selections (using fst and
snd, because Clean tuple patterns are always eager) to prevent non-termination
of recursive let(rec)s in the next section.

4.4 Let(rec) Expressions

Now we are ready to add irrefutable let(rec) expressions. Refutable let(rec) ex-
pressions must be written as cases, which will be introduced in next section.

:: Expr = --- // Previous def.
| Letrec [Def| Expr // let(rec) .. in ..
|y // Combinator

:: Def = (|=) infix 0 Expr Expr /)=

compose - - - // Previous def.
compose (Letrec ds e) = compose (letRecToLambda ds e)
compose Y =dynamic y :: Va: (a—a)—a

where y £ = £ (y £)
letRecToLambda :: [Def| Expr — Expr

15 until 32. Clean does not support functions or data types with arity above 32.



letRecToLambda ds e = let (p = d) = combine ds
in ski pe @ (Y @skipd)

combine :: [Def] — Def
combine [p = e =pEe
combine [pl = el:ds] = let (p2 | e2) = combine ds
in Tuple 2 @ pl @ p2 |= Tuple 2 @ el @ e2

When compose encounters a let(rec) expression it uses letRecToLambda to convert
it into a lambda expression. The letRecToLambda function combines all (possibly
mutually recursive) definitions by pairing definitions into a single (possibly re-
cursive) irrefutable tuple pattern. This leaves us with just a single definition that
letRecToLambda converts to a lambda expression in the usual way [21].

4.5 Case Expressions

Composing a case expression is done by transforming each alternative into a
lambda expression that takes the expression to match as an argument. If the
expression matches the pattern, the right-hand side of the alternative is taken.
When it does not match, the lambda expression corresponding to the next alter-
native is applied to the expression, forming a cascade of if-then-else constructs.
This results in a single lambda expression that implements the case construct,
and we apply it to the expression that we wanted to match against.

: Expr = --- // Previous def.
| Case Expr [Alt] // case .. of ..

:: Alt = (=) infix 0 Expr Expr S/

compose - - - // Previous def.
compose (Case e as) = compose (altsToLambda as @ e)

We translate the alternatives into lambda expressions below using the following
rules. If the pattern consists of an application we do bracket abstraction for
each argument, just as we did for lambda expressions, in order to deal with
each subpattern recursively. Matching against an irrefutable pattern, such as
variables of tuples, always succeeds and we reuse the code of ski that does the
matching for lambda expressions. Matching basic values is done using ifEqual
that uses Clean’s built-in equalities for each basic type. We always add a default
alternative, using the mismatch function, that informs the user that none of the
patterns matched the expression.

altsToLambda :: [Alt] — Expr

altsToLambda |] = Value mismatch

altsToLambda [f @ x —> e:as] = altsTolLambda [f —> ski x e:as]
altsToLambda [Var x = e:_] =Var x — e

altsToLambda [Tuple n = e:_|] = Tuple n — e

altsToLambda [Value dyn —> th:as] = let el = altsToLambda as
in case dyn of



(i :: Int) — Value (ifEqual i) @ th @ el
(¢ :: Char) — Value (ifEqual c) @ th @ el
-+« // for all basic types

ifEqual :: a — Dynamic | TC a & Eq a
ifEqual x = dynamic Ath el y — if (x = 1y) th (el y)
:: Vb: b (2~ —b) a~—b

mismatch = dynamic raise "Pattern mismatch" :: Va: a

Matching against a constructor contained in a dynamic takes more work. For
example, if we put Clean’s list constructor [:] in a dynamic we find that it
has type Va:a — [a] — [a], which is a function type. In Clean, one cannot match
closures or functions against constructors. Therefore, using the function makeNode
below, we construct a node that contains the right constructor by adding dummy
arguments until it has no function type anymore. The function ifMatch uses
some low-level code to match two nodes to see if the constructor of the pattern
matches the outermost constructor of the expression. If it matches, we need to
extract the arguments from the node. This is done by the applyTo function, which
decides how many arguments need to be extracted (and what their types are) by
inspection of the type of the curried constructor. Again, we use some low-level
auxiliary code to extract each argument while preserving laziness.

altsToLambda [Value dyn = th:as] = let el = altsToLambda as
in case dyn of
-+ // previous definition for basic types
constr — Value (ifMatch (makeNode constr))
@ (Value (applyTo dyn) @ th) @ el

ifMatch :: Dynamic — Dynamic
ifMatch (x :: a) = dynamic Ath el y — if (matchNode x y) (th y) (el y)
:: Vb: (a—b) (a—Db) a—b

makeNode :: Dynamic — Dynamic
makeNode (f :: a —b) = makeNode (dynamic f undef :: b)
makeNode (x :: a) = dynamic x :: a
applyTo :: Dynamic — Dynamic
applyTo --- // and so on, most specific type first...
applyTo (_ :: a b—c¢) = dynamic \f x — f (arglof2 x) (arg2of2 x)

:: Vd: (ab—d) c—d
applyTo (_ :: a—b) = dynamic \f x — f (arglofl x)

1t Ve: (a—c) b—c

applyTo (_ :: a) =dynamic \Xf x —f :: Vb: ba—b
matchNode :: a a— Bool // low-level code; compares two nodes.

argiofn :: a—b // low-level code; selects i'" argument of an n-ary node



Pattern matching against user defined constructors requires that the construc-
tors are available from (i.e. stored in) the file system. Esther currently does not
support type definitions at the command line, and the Clean compiler must be
used to introduce new types and constructors into the file system. The example
below shows how one can write the constructors C, D, and E of the type T to
the file system. Once the constructors are available in the file system, one can
write command lines like \x -> case x of Cy -> y; D z -> z; E -> 0 (for
which type (T Int) — Int is inferred).

:: Ta=Ca | DInt | E

Start world =
let (_, wl) = writeDynamic "C" (dynamic C :: Va: a— T a) world
(_, w2) = writeDynamic "D" (dynamic D :: Va: Int — T a) wl
(, w3) = writeDynamic "E" (dynamic E :: Va: T a) w2
in w3

4.6 Overloading

Support for overloaded expressions within dynamics in Clean is not yet im-
plemented (e.g. one cannot write dynamic (=) :: Va: a a—Bool | Eq a). Even
when a future dynamics implementation supports overloading, it cannot be used
in a way that suits Esther. We want to solve overloading using instances/dic-
tionaries from the file system, which may change over time, and which is some-
thing we cannot expect from Clean’s dynamic run-time system out of the box.

Below is the Clean version of the overloaded functions = and one. We will
use these two functions as a running example.

class Eq a where (=) infix 4 :: a a — Bool
class one a where one :: a

instance Eq Int where (=) x y = // low-level code to compare integers
instance one Int where one =1

To mimic Clean’s overloading, we introduce the type O to differentiate between
‘overloaded’ dynamics and ‘normal’ dynamics. The type O, shown below, has
four type variables which represent: the variable the expression is overloaded in
(v), the dictionary type (d), the ‘original’ type of the expression (t), and the
type of the name of the overloaded function (n). Values of the type O consists
of a constructor 0 followed by the overloaded expression (of type d — t), and the
name of the overloaded function (of type n). We motivate the design of this type
later on in this section.

::0vdtn=0(d—t)n // Overloaded expression
— =dynamic 0 id "Eq" :: Va: 0 a (a a—Bool) (a a— Bool) String
one = dynamic 0 id "one" :: Va: 0 a a a String

instance_Eq_Int = dynamic Ax y —x =7y :: Int Int — Bool
instance_one_Int = dynamic 1 :: Int



The dynamic =, in the example above, is Esther’s representation of Clean’s
overloaded function =. The overloaded expression itself is the identity function
because the result of the expression is the dictionary of = The name of the
class is Eq. The dynamic = is overloaded in a single variable a, the type of the
dictionary is a — a — Bool as expected, the ‘original’ type is the same, and the
type of the name is String. Likewise, the dynamic one is Esther’s representation
of Clean’s overloaded function one.

By separating the different parts of the overloaded type, we obtain direct
access to the variable in which the expression is overloaded. This makes it easy
to detect if the overloading has been resolved (i.e. the variable no longer unifies
with Va:a.a). By separating the dictionary type and the ‘original’ type of the
expression, it becomes easier to check if the application of one overloaded dy-
namic to another is allowed (i.e. can a value of type 0 (a—1b) _ be applied
to a value of type 0 _ _ a _).

To apply one overloaded dynamic to another, we combine the overloading
information using the P (pair) type as shown below in the function apply0.

:Pab=Pab // Just a pair

apply0 :: Dynamic Dynamic — Dynamic
apply0 ((0 £ nf) :: 0 vf df (a—b) sf) ((0 x nx) :: 0 vx dx a sx)
= dynamic 0 (M_f d_x— f d_f (x d_x)) (P nf nx)
:: 0 (P vf vx) (P df dx) b (P sf sx)

We use the (private) data type P instead of tuples because this allows us to
differentiate between a pair of two variables and a single variable that has been
unified with a tuple. Applying apply0 to =— and one yields an expression seman-
tically equal to isOne below. isOne is overloaded in a pair of two variables, which
are the same. The overloaded expression needs a pair of dictionaries to build the
expression (=) one. The ‘original’ type is a — Bool, and it is overloaded in Eq
and one. Esther will pretty print this as: isOne :: a—Bool | Eq a & one a.

isOne = dynamic 0 (A(P d_Eq d_one) — id d_Eq (id d_one)) (P "Eq" "one")
:: Va: 0 (P aa) (P (aa—Bool) a) (a— Bool) (P String String)

Applying isOne to the integer 42 will bind the variable a to Int. Esther is now
able to choose the right instance for both Eq and one. It searches the file system
for the files named “instance Eq Int” and “instance one Int”, and applies the
code of isOne to the dictionaries after applying the overloaded expression to 42.
The result will look like isOne10 in the example below, where all overloading has
been removed.

isOne42 = dynamic (A(P d_Eq d_one) — id d_Eq (id d_one) 42)
(P d_Eq_Int d_one_Int) :: Bool

Although overloading is resolved in the example above, the plumbing/dict-ionary
passing code is still present. This will increase evaluation time, and it is not clear
yet how this can be prevented.



5 Related Work

We have not yet seen an interpreter or shell that equals Esther’s ability to use
pre-compiled code, and to store expressions as compiled code, which can be used
in other already compiled programs, in a type safe way.

Es [13] is a shell that supports higher-order functions and allows the user
to construct new functions at the command line. A UNIX shell in Haskell [22]
by Jim Mattson is an interactive program that also launches executables, and
provides pipelining and redirections. Tcl [23] is a popular tool to combine pro-
grams, and to provide communications between them. None of these programs
provides a way to read and write typed objects, other than strings, from and to
disk. Therefore, they cannot provide our level of type safety.

A functional interpreter with a file system manipulation library can also
provide functional expressiveness and either static or dynamic type checking of
part of the command line. For example, the Scheme Shell (ScSh) [12] integrates
common shell operations with the Scheme language to enable the user to use
the full expressiveness of Scheme at the command line. Interpreters for statically
typed functional languages, such as Hugs [24], even provide static type checking
in advance. Although they do type check source code, they cannot type check
the application of binary executables to documents/data structures because they
work on untyped executables.

The BeanShell [25] is an embeddable Java source interpreter with object
scripting language features, written in Java. It is able of type inference for vari-
ables and to combine shell scripts with existing Java programs. While Esther
generates compiled code via dynamics, the BeanShell interpreter is invoked each
time a script is called from a normal Java program.

Run-time code generation in order to specialize code at run-time to certain
parameters is not related to Esther, which only combines existing code.

There are concurrent versions of both Haskell and Clean. Concurrent Haskell
[6] offers lightweight threads in a single UNIX process and provides M-Vars as
the means of communication between threads. Concurrent Clean [5] is only avail-
able on multiprocessor Transputers and on a network of single-processor Apple
Macintosh computers. Concurrent Clean provides support for native threads
on Transputer systems. On a network of Apple computers, it ran the same
Clean program on each processor, providing a virtual multiprocessor system.
Concurrent Clean provided lazy graph copying as the primary communication
mechanism. Both concurrent systems cannot easily provide type safety between
different programs or between multiple incarnations of a single program.

Both Cooper [8] and Lin [9] have extended Standard ML with threads (im-
plemented as continuations using call/CC) to form a small functional operating
system. Both systems implement the basics needed for a stand-alone operat-
ing system. However, none of them support the type-safe communication of any
value between different computers.

Erlang [10] is a functional language specifically designed for the development
of concurrent processes. It is completely dynamically typed and primarily uses
interpreted byte-code, while Famke is mostly statically typed and executes native



code generated by the Clean compiler. A simple spelling error in a token used
during communication between two processes is often not detected by Erlang’s
dynamic type system, sometimes causing deadlock.

Back et al. [11] built two prototypes of a Java operating system. Although
they show that Java’s extensibility, portable byte code and static/dynamic type
system provides a way to build an operating system where multiple Java pro-
grams can safely run concurrently, Java lacks the power of polymorphic and
higher-order functions and closures (to allow laziness) that our functional ap-
proach offers.

The Scheme Shell [12] integrates a shell into the programming language in
order to enable the user to use the full expressiveness of Scheme. Es [13] is a
shell that supports higher-order functions and allows the user to construct new
functions at the command line. Neither shell provides a way to read and write
typed objects from and to disk, and they cannot provide type safety because
they operate on untyped executables.

6 Conclusions

We have shown how to build a shell that provides a simple, but powerful strongly
typed functional programming language. We were able to do this using only
Clean’s support for run-time type unification and dynamic linking, albeit syntax
transformations and a few low-level functions were necessary. The shell named
Esther supports type checking and type inference before evaluation. It offers
application, lambda abstraction, recursive let, pattern matching, and function
definitions: the basics of any functional language. Additionally, infix operators
and support for overloading make the shell easy to use.

By combining compiled code, Esther allows the use of any pre-compiled pro-
gram as a function in the shell. Because Esther stores functions/expressions
constructed at the command line as a dynamic, it supports writing compiled
programs at the command line. Furthermore, these expressions written at the
command line can be used in any pre-compiled Clean program. The evaluation
of expressions using recombined compiled code is not as fast as using the Clean
compiler. Speed can be improved by introducing less combinators during bracket
abstraction, but it seams unfeasible to make Esther perform the same optimiza-
tions as the Clean compiler. In practice, we find Esther responsive enough, and
more optimizations do not appear worth the effort at this stage. One can al-
ways construct a Clean module using the same syntax and use the compiler to
generate a dynamic that contains more efficient code.
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