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Abstract. Generic functions are defined by induction on the struc-
tural representation of types. As a consequence, by defining just a sin-
gle generic operation, one acquires this operation over any particular
type. An instance on a specific type is generated by interpretation of the
type’s structure. A direct translation leads to extremely inefficient code
that involves many conversions between types and their structural rep-
resentations. In this paper we present an optimization technique based
on compile-time symbolic evaluation. We prove that the optimization
removes the overhead of the generated code for a considerable class of
generic functions. The proof uses typing to identify intermediate data
structures that should be eliminated. In essence, the output after opti-
mization is similar to hand-written code.

1 Introduction

The role of generic programming in the development of functional programs is
steadily becoming more important. The key point is that a single definition of
a generic function is used to automatically generate instances of that function
for arbitrarily many types. These generic functions are defined by induction on
a structural representation of types. Adding or changing a type does not re-
quire modifications in a generic function; the appropriate code will be generated
automatically. This eradicates the burden of writing similar instances of one
particular function for numerous different data types, significantly facilitating
the task of programming. Typical examples include generic equality, mapping,
pretty-printing, and parsing.

Current implementations of generic programming [AP01,CHJ+02,HP01], gen-
erate code which is strikingly slow because generic functions work with struc-
tural representations rather than directly with data types. The resulting code
requires numerous conversions between representations and data types. Without
optimization automatically generated generic code runs nearly 10 times slower
than its hand-written counterpart.

In this paper we prove that compile-time (symbolic) evaluation is capable of
reducing the overhead introduced by generic specialization. The proof uses typing
to predict the structure of the result of a symbolic computation. More specifically,
we show that if an expression has a certain type, say σ, then its symbolic normal
form will contain no other data-constructors than those belonging to σ.



It appears that general program transformation techniques used in current
implementations of functional languages are not able to remove the generic over-
head. It is even difficult to predict what the result of applying such transforma-
tions on generic functions will be, not to mention a formal proof of completeness
of these techniques.

In the present paper we are looking at generic programming based on the
approach of kind-indexed types of Hinze [Hin00a], used as a basis for the imple-
mentation of generic classes of Glasgow Haskell Compiler (GHC) [HP01], Generic
Haskell [CHJ+02] and Generic Clean [AP01]. The main sources of inefficiency
in the generated code are due to heavy use of higher-order functions, and con-
versions between data structures and their structural representation. For a large
class of generic functions, our optimization removes both of them, resulting in
code containing neither parts of the structural representation (binary sums and
products) nor higher-order functions introduced by the generic specialization
algorithm.

The rest of the paper is organized as follows. In section 2 we give motiva-
tion for our work by presenting the code produced by the generic specialization
procedure. The next two sections are preliminary; they introduce a simple func-
tional language and the typing rules. In section 5, we extend the semantics of
our language to evaluation of open expressions, and establish some properties
of this so-called symbolic evaluation. In section 6 we discuss termination issues
of symbolic evaluation of the generated code. Section 7 discusses related work.
Section 8 reiterates our conclusions.

2 Generics

In this section we informally present the generated code using as an example
the generic mapping specialized to lists. The structural representation of types
is made up of just the unit type, the binary product type and the binary sum
type [Hin99]:

data 1 = 1

data α× β = (α, β)
data α + β = Inl α | Inr β

For instance, the data types

data List α = Nil | Cons α (List α)
data Tree α β = Tip α | Bin β (Tree α β) (Tree α β)

are represented as

type List◦ α = 1+ α× (List α)
type Tree◦ α β = α + β × Tree α β × Tree α β

Note that the representation of a recursive type is not recursive.
The structural representation of a data type is isomorphic to that data type.

The conversion functions establish the isomorphism:



toList : List α → List◦ α
toList = λl.case l of

Nil → Inl 1
Cons x xs → Inr (x, xs)

fromList : List◦ α → List α
fromList = λl.case l of

Inl u → case u of 1 → Nil
Inr p → case p of (x, xs) → Cons x xs

The generic specializer automatically generates the type synonyms for structural
representations and the conversion functions.

Data types may contain the arrow type. To handle such types the conversion
functions are packed into embedding-projection pairs [HP01]

data α À β = EP (α → β) (β → α)

The projections, the inversion and the (infix) composition of embedding-projections
are defined as follows:

to : (α À β) → (α → β)
to = λx.case x of EP t f → t
from : (α À β) → (β → α)
from = λx.case x of EP t f → f
inv : (α À β) → (β À α)
inv = λx.EP (from x) (to x)
• : (β À γ) → (α À β) → (α À γ)
• = λa.λb.EP (to a ◦ to b) (from b ◦ from a)

For instance, the generic specializer generates the following embedding-projection
pair for lists:

convList : List α À List◦ α
convList = EP toList fromList

To define a generic (polytypic) function the programmer provides the basic
poly-kinded type [Hin00b] and the instances on the base types. For example, the
generic mapping is given by the type

type Map α β = α → β

and the base cases

map1 : 1→ 1

map1 = λx.case x of 1 → 1

map× : ∀α1α2β1β2.(α1 → β1) → (α2 → β2) → (α1 × α2 → β1 × β2)
map× = λf.λg.λp.case p of (x, y) → (f x, g y)
map+ : ∀α1α2β1β2.(α1 → β1) → (α2 → β2) → (α1 + α2 → β1 + β2)
map+ = λf.λg.λe.case e of

Inl x → Inl (f x)
Inr y → Inr (g y)



The generic specializer generates the code for the structural representation T◦

of a data type T by interpreting the structure of T◦. For instance,

mapList◦ : (α → β) → List◦ α → List◦ β
mapList◦ = λf.map+ map1 (map× f (mapList f))

Note that the structure of mapList◦ reflects the structure of List◦.
The way the arguments and the result of a generic function are converted

from and to the structural representation depends on the base type of the generic
function. Embedding-projections are used to devise the automatic conversion.
Actually, embedding-projections form a predefined generic function that is used
for conversions in all other generic functions (e.g. map) [Hin00a]. The type of
this generic function is α À β and the base cases are

ep1 : 1 À 1

ep1 = EP map1 map1
ep+ : (α1 À α2) → (β1 À β2) → (α1 + β1 À α2 + β2)
ep+ = λa.λb.EP (map+ (to a) (to b)) (map+ (from a) (from b))
ep× : (α1 À α2) → (β1 À β2) → (α1 × β1 À α2 × β2)
ep× = λa.λb.EP (map× (to a) (to b)) (map× (from a) (from b))
ep→ : (α1 À α2) → (β1 À β2) → ((α1 → β1) À (α2 → β2))
ep→ = λa.λb.EP (λf.to b ◦ f ◦ from a) (λf.from b ◦ f ◦ to a)
epÀ : (α1 À α2) → (β1 À β2) → ((α1 À β1) À (α2 À β2))
epÀ = λa.λb.EP (λe.b • e • inv a) (λe.inv b • e • a)

The generic specializer generates the instance of ep specific to a generic func-
tion. The generation is performed by interpreting the base (kind-indexed) type
of the function. For mapping (with the base type Map α β) we have:

epMap : (α1 À α2) → (β1 À β2) → ((α1 → β1) À (α2 → β2))
epMap = λa.λb.ep→ a b

Now there are all the necessary components to generate the code for a generic
function specialized to any data type. In particular, for mapping on lists the
generic specializer generates

mapList : (α → β) → List α → List β
mapList = from (epMap convList convList) ◦mapList◦

This function is much more complicated than its hand-coded counterpart

mapList = λf.λl.case l of
Nil → Nil
Cons x xs → Cons (f x) (mapList f xs)

The reasons for inefficiency are the intermediate data structures for the struc-
tural representation and extensive usage of higher-order functions. In the rest
of the paper we show that symbolic evaluation guarantees that the intermedi-
ate data structures are not created by the resulting code. The resulting code is
comparable to the hand-written code.



3 Language

In the following section we present the syntax and operational semantics of a
core functional language. Our language supports essential aspects of functional
programming such as pattern matching and higher-order functions.

3.1 Syntax

Definition 1 (Expressions and Functions)
a) The set of expressions is defined by the following syntax. In the definition,

x ranges over variables, C over constructors and F over function symbols.
Below the notation ~a stands for (a1, . . . , ak).

E ::= x | C ~E | F | λx.E | E E′ | case E of P1 → E1 · · ·Pn → En

P ::= C~x

b) A function definition is an expression of the form F = EF with FV(EF) = ∅.
With FV(E) we denote the set of free variables occurring in E.

The distinction between applications (expressions) and specifications (func-
tions) is reflected by our language definition. Expressions are composed from
applications of function symbols and constructors. Constructors have a fixed
arity, indicating the number of arguments to which they are applied. Partially
applied constructors can be expressed by λ-expressions. A function expression is
applied to an argument expression by an (invisible, binary) application operator.
Finally, there is a case-construction to indicate pattern matching. Functions are
simply named expressions (with no free variables).

3.2 Semantics

We will describe the evaluation of expressions in the style of natural operational
semantics, e.g. see [NN92]. The underlying idea is to specify the result of a
computation in a compositional, syntax-driven manner.

In this section we focus on evaluation to normal form (i.e. expressions being
built up from constructors and λ-expressions only). In section 5, we extend this
standard evaluation to so-called symbolic evaluation: evaluation of expressions
containing free variables.

Definition 2 (Standard Evaluation)
Let E, N be expressions. Then E is said to evaluate to N (notation E ⇓ N) if
E ⇓ N can be produced in the following derivation system.

λx.E ⇓ λx.E (E-λ)
~E ⇓ ~N

(E-cons)
C ~E ⇓ C ~N

F = EF EF ⇓ N
(E-fun)

F ⇓ N

E ⇓ Ci
~E Di[~x := ~E] ⇓ N

(E-case)
case E of . . .Ci~x → Di . . . ⇓ N

E ⇓ λx.E′′ E′′[x := E′] ⇓ N
(E-app)

E E′ ⇓ N



Here E[x := E′] denotes the term that is obtained when x in E is substituted
by E′.

Observe that our evaluation does not lead to standard normal forms (ex-
pressions without redexes): if such an expression contains λs, there may still be
redexes below these λs.

4 Typing

Typing systems in functional languages are used to ensure consistency of function
applications: the type of each function argument should match some specific
input type. In generic programming types also serve as a basis for specialization.
Additionally, we will use typing to predict the constructors that appear in the
result of a symbolic computation.

Syntax of types

Types are defined as usual. We use ∀-types to express polymorphism.

Definition 3 (Types)
The set of types is given by the following syntax. Below, α ranges over type
variables, and T over type constructors.

σ, τ ::= α | T | σ→τ | σ τ | ∀α.σ

We will sometimes use ~σ→τ as a shorthand for σ1→ . . .→σk→τ . The set of free
type variables of σ is denoted by FV(σ).

The main mechanism for defining new data types in functional languages is
via algebraic types.

Definition 4 (Type environments)
a) Let A be an algebraic type system, i.e. a collection of algebraic type def-

initions. The type specifications in A give the types of the algebraic data
constructors. Let

T ~α = · · · | Ci ~σi | · · ·
be the specification of T in A. Then we write

A ` Ci : ∀~α.~σi→T ~α.

b) The function symbols are supplied with a type by a function type environ-
ment F , containing declarations of the form F : σ.

For the sequel, fix a function type environment F , and an algebraic type
system A.



Type derivation

Definition 5 (Type Derivation)
a) The type system deals with typing statements of the form

B ` E : σ,

where B is a type basis (i.e a finite set of declarations of the form x : τ).
Such a statement is valid if it can be produced using the following derivation
rules.

B, x : σ ` x : σ (σ-var)
F : σ ∈ F

(σ-F)
B ` F : σ

A ` C : σ
(σ-A)

B ` C : σ

B ` C : ~τ→σ B ` ~E : ~τ
(σ-cons)

B ` C ~E : σ

B ` E : τ B ` Ci : ~ρi→τ B, ~xi : ~ρi ` Ei : σ
(σ-case)

B ` case E of · · ·Ci ~xi → Ei · · · : σ

B ` E : τ→σ B ` E′ : τ
(σ-app)

B ` E E′ : σ

B, x : τ ` E : σ
(σ-λ)

B ` λx.E : τ→σ

B ` E : σ α /∈ FV(B)
(σ-∀-intro)

B ` E : ∀α.σ

B ` E : ∀α.σ
(σ-∀-elim)

B ` E : σ[α := τ ]

b) The function type environment F is type correct if each function definition is
type correct, i.e. for F with type σ and definition F = EF one has ∅ ` EF : σ.

5 Symbolic evaluation

The purpose of symbolic evaluation is to reduce expressions at compile-time, for
instance to simplify the generated mapping function for lists (see section 2).

If we want to evaluate expressions containing free variables, evaluation cannot
proceed if the value of such a variable is needed. This happens, for instance, if a
pattern match on such a free variable takes place. In that case the corresponding
case-expression cannot be evaluated fully. The most we can do is to evaluate
all alternatives of such a case-expression. Since none of the pattern variables
will be bound, the evaluation of these alternatives is likely to get stuck on the
occurrences of variables again.

Symbolic evaluation gives rise to a new (extended) notion of normal form,
where in addition to constructors and λ-expressions, also variables, cases and
higher-order applications can occur. This explains the large number of rules
required to define the semantics.



Definition 6 (Symbolic Evaluation) We adjust definition 2 of evaluation by
replacing the E-λ rule, and by adding rules for dealing with new combinations
of expressions.

x ⇓ x (E-var)
E ⇓ N

(E-λ)
λx.E ⇓ λx.N

E ⇓ case D of · · ·Pi → Di · · · case Di of · · ·Qj → Ej · · · ⇓ Ni

(E-case-case)
case E of · · ·Qj → Ej · · · ⇓ case D of · · ·Pi → Ni

E ⇓ x Ei ⇓ Ni

(E-case-var)
case E of · · ·Pi → Ei · · · ⇓ case x of · · ·Pi → Ni · · ·

E ⇓ E′ E′′ Ei ⇓ Ni

(E-case-app)
case E of · · ·Pi → Ei · · · ⇓ case E′ E′′ of · · ·Pi → Ni · · ·

E ⇓ case D of · · ·Pi → Di · · · Di E′ ⇓ Ni

(E-app-case)
E E′ ⇓ case D of · · ·Pi → Ni · · ·

E ⇓ x E′ ⇓ N
(E-app-var)

E E′ ⇓ x N

E ⇓ D D′ E′ ⇓ N
(E-app-app)

E E′ ⇓ D D′ N

Note that the rules (E-case) and (E-app) from definition 2 are responsible
for removing constructor-destructor pairs and applications of the lambda-terms.
These two correspond to the two sources of inefficiency in the generated pro-
grams: intermediate data structures and higher-order functions. The rules (E-
case-case) and (E-app-case) above are called code-motion rules [DMP96]: their
purpose is to move code to facilitate further transformations. For instance, the
(E-case-case) rule pushes the outer case in the alternatives of the inner case
in hope that an alternative is a constructor. If so, the (E-case) rule is applica-
ble and the intermediate data are removed. Similarly, (E-app-case) pushes the
application arguments in the case alternatives hoping that an alternative is a
lambda-term. In this case (E-app) becomes applicable.

Example 7 (Symbolic Evaluation) Part of the derivation tree for the eval-
uation of the expression map× f1 g1 (map× f2 g2 p) is given below. The function
map× is defined in section 2.

map× ⇓
λf.λg.λp.case p of

(x, y) → (f x, g y)

map× f2 g2 p ⇓
case p of

(x′, y′) → (f2 x′, g2 y′)

case (f2 x′, g2 y′) of
(x, y) → (f1 x, g1 y) ⇓

(f1 (f2 x′), g1 (g2 y′))

case map× f2 g2 p of
(x, y) → (f1 x, g1 y) ⇓

case p of (x′, y′) → (f1 (f2 x′), g1 (g2 y′))

map× f1 g1 (map× f2 g2 p) ⇓ case p of (x′, y′) → (f1 (f2 x′), g1 (g2 y′))



The following definition characterizes the results of symbolic evaluation.

Definition 8 (Symbolic Normal Forms) The set of symbolic normal forms
(indicated by Ns) is defined by the following syntax.

Ns ::= C ~Ns | λx.Ns | Nh | case Nh of · · ·Pi → Ns · · ·
Nh ::= x | Nh Ns

Proposition 9 (Correctness of Symbolic Normal Form)

E ⇓ N ⇒ N ∈ Ns

Proof : By induction on the derivation of E ⇓ N . 2

5.1 Symbolic evaluation and typing

In this subsection we will show that the type of an expression (or the type of a
function) can be used to determine the constructors that appear (or will appear
after reduction) in the symbolic normal form of that expression. Note that this
is not trivial because an expression in symbolic normal form might still contain
potential redexes that can only be determined and reduced during actual evalu-
ation. Recall that one of the reasons for introducing symbolic evaluation is the
elimination of auxiliary data structures introduced by the generic specialization
procedure.

The connection between evaluation and typing is usually given by the so-
called subject reduction property indicating that typing is preserved during re-
duction.

Proposition 10 (Subject Reduction Property)

B ` E : σ,E ⇓ N ⇒ B ` N : σ

Proof : By induction on the derivation of E ⇓ N . 2

There are two ways to determine constructors that can be created during the
evaluation of an expression, namely, (1, directly) by analyzing the expression
itself or (2, indirectly) by examining the type of that expression.

In the remainder of this section we will show that (2) includes all the con-
structors of (1), provided that (1) is determined after the expression is evaluated
symbolically. The following definition makes the distinction between the different
ways of indicating constructors precise.

Definition 11 (Constructors of normal forms and types)
– Let N be an expression in symbolic normal form. The set of constructors

appearing in N (denoted as CN (N)) is inductively defined as follows.

CN (C ~N) = {C} ∪ CN ( ~N)
CN (λx.N) = CN (N)
CN (x) = ∅
CN (N N ′) = CN (N) ∪ CN (N ′)
CN (case N of · · ·Pi → Ni · · ·) = CN (N) ∪ (∪iCN (Ni))



Here CN ( ~N) should be read as ∪iCN (Ni).
– Let σ be a type. The set of constructors in σ (denoted as CT (σ)) is inductively

defined as follows.

CT (α) = ∅
CT (T) = ∪i[{Ci} ∪ CT (~σi)], where T = · · · | Ci ~σi | · · ·
CT (τ→σ) = CT (τ) ∪ CT (σ)
CT (τ σ) = CT (τ) ∪ CT (σ)
CT (∀α.σ) = CT (σ)

– Let B be a basis. By CT (B) we denote the set ∪CT (σ) for each x : σ ∈ B.

Example 12 For the List type from section 2 and for the Rose tree

data Rose α = Node α (List (Rose α))

we have CT (List) = {Nil,Cons} and CT (Rose) = {Node,Nil,Cons}.
As a first step towards a proof of the main result of this section we concentrate

on expressions that are already in symbolic normal form. Then their typings give
a safe approximation of the constructors that are possibly generated by those
expressions. This is stated by the following property. In fact, this result is an
extension of the Canonical Normal Forms Lemma, e.g. see [Pie02].

Proposition 13 Let N ∈ Ns. Then

B ` N : σ ⇒ CN (N) ⊆ CT (B) ∪ CT (σ).

Proof : By induction on the structure of Ns. 2

The main result of this section shows that symbolic evaluation is adequate
to remove constructors that are not contained in the typing statement of an
expression. For traditional reasons we call this the deforestation property.

Proposition 14 (Deforestation Property)

B ` E : σ,E ⇓ N ⇒ CN (N) ⊆ CT (B) ∪ CT (σ)

Proof : By proposition 9, 13, and 10. 2

5.2 Optimising Generics

Here we show that, by using symbolic evaluation, one can implement a compiler
that for a generic operation yields code as efficient as a dedicated hand coded
version of this operation.

The code generated by the generic specialization procedure is type correct
[Hin00a]. We use this fact to establish the link between the base type of the
generic function and the type of a specialized instance of that generic function.



Proposition 15 Let g be a generic function of type σ, T a data-type, and let
gT be the instance of g on T. Then gT is typeable. Moreover, there are no other
type constructors in the type of gT than T itself or those appearing in σ.

Proof : See [AS03]. 2

Now we combine typing of generic functions with the deforestation property
leading to the following.

Proposition 16 Let g be a generic function of type σ, T a data-type, and let
gT be the instance of g on T. Suppose gT ⇓ N . Then for any data type S one has

S /∈ σ,T ⇒ CT (S) ∩ CN (N) = ∅.

Proof : By proposition 14, 10, and 15. 2

Recall from section 2 that the intermediate data introduced by the generic
specializer are built from the structural representation base types {×,+,1, À
}. It immediately follows from the proposition above that, if neither σ nor T
contains a structural representation base type S, then the constructors of S are
not a part of the evaluated right-hand side of the instance gT .

6 Implementation aspects: termination of symbolic
evaluation

Until now we have avoided the termination problem of the symbolic evaluation.
In general, this termination problem is undecidable, so precautions have to be
taken if we want to use the symbolic evaluator at compile-time. It should be
clear that non-termination can only occur if some of the involved functions are
recursive. In this case such a function might be unfolded infinitely many times (by
applying the rule (E-fun)). The property below follows directly form proposition
16.

Corollary 17 (Efficiency of generics) Non-recursive generic functions can
be implemented efficiently. More precisely, symbolic evaluation removes inter-
mediate data structures and functions concerning the structural representation
base types.

The problem arises when we deal with generic instances on recursive data
types. Specialization of a generic function to such a type will lead to a recursive
function. For instance, the specialization of map to List contains a call to mapList◦

which, in turn, calls recursively mapList. We can circumvent this problem by
breaking up the definition into a non-recursive part and to reintroduce recursion
via the standard fixed point combinator Y = λf.f(Y f). Then we can apply
symbolic evaluation to the non-recursive part to obtain an optimized version of
our generic function. The standard way to remove recursion is to add an extra
parameter to a recursive function, and to replace the call to the function itself
by a call to that parameter.



Example 18 (Non-recursive specialization) The specialization of map to
List without recursion:

map′List = λm.from (ep→ convList convList) ◦
(λf.map+ map1 (map× f (m f)))

mapList = Y map′List

After evaluating map′List symbolically we get

map′List = λm.λf.λx. case x of

Nil → Nil
Cons y ys → Cons (f y) (m f ys)

showing that all intermediate data structures are eliminated.

Suppose the generic instance has type τ . Then the non-recursive variant (with
the extra recursion parameter) will have type τ → τ , which obviously has the
same set of type constructors as τ .

However, this way of handling recursion will not work for generic func-
tions whose base type contains a recursive data type. Consider for example the
monadic mapping function for the list monad mapl with the base type

type Mapl α β = α → List β

and the base cases

mapl1 : 1→ List 1
mapl1 = return 1
mapl× : ∀α1α2β1β2.(α1 → List β1) → (α2 → List β2) → α1 × α2

→ List (β1 × β2)
mapl× = λf.λg.λp.case p of (x, y) → f x À= λx′.g y À= λy′.return (x′, y′)
mapl+ : ∀α1α2β1β2.(α1 → List β1) → (α2 → List β2) → α1 + α2

→ List (β1 + β2)
mapl+ = λf.λg.λe.case e of

Inl x → f x À= λx′.return (Inl x′)
Inr y → g y À= λy′.return (Inr y′)

where
return = λx.Cons x Nil
(À=) = λl.λf.flatten (map f l)

are the monadic return and (infix) bind for the list monad. The specialization
of mapl to any data type, e.g. Tree, uses the embedding-projection specialized to
Mapl (see section 2).

maplTree : (α → List β) → Tree α → List (Tree β)
maplTree = from (epMapl convTree convTree) ◦maplTree◦



The embedding-projection epMapl

epMapl : (α1 À α2) → (β1 À β2) → ((α1 → List β1) À (α2 → List β2))
epMapl = λa.λb.ep→ a (epList b)

contains a call to the (recursive) embedding-projection for lists epList

epList : (α À β) → (List α À List β)
epList = from (epÀ convList convList) ◦ epList◦

epList◦ : (α À β) → (List◦ α À List◦ β)
epList◦ = λf.ep+ ep1 (ep× f (epList f))

We cannot get rid of this recursion (using the Y -combinator) because it is not
possible to replace the call to epList in epmapl by a call to a non-recursive variant
of epList and to reintroduce recursion afterwards.

Online non-termination detection

A way to solve the problem of non-termination is to extend symbolic evaluation
with a mechanism for so-called online non-termination detection. A promising
method is based on the notion of homeomorphic embedding (HE ) [Leu98]: a
(partial) ordering on expressions used to identify ‘infinitely growing expressions’
leading to non-terminating evaluation sequences. Clearly, in order to be safe,
this technique will sometimes indicate unjustly expressions as dangerous. We
have done some experiments with a prototype implementation of a symbolic
evaluator extended with termination detection based on HEs. It appeared that in
many cases we get the best possible results. However, guaranteeing success when
transforming arbitrary generics seems to be difficult. The technique requires
careful fine-tuning in order not to pass the border between termination and
non-termination. This will be a subject to further research.

In practice, our approach will handle many generic functions as most of them
do not contain recursive types in their base type specifications, and hence, do not
require recursive embedding-projections. For instance, all generic functions in the
generic Clean library (except the monadic mapping) fulfill this requirement.

7 Related Work

The generic programming scheme that we use in the present paper is based on
the approach by Hinze[Hin00a]. Derivable type classes of GHC [HP01], Generic
Haskell [CHJ+02] and Generic Clean [AP01] are based on this specialization
scheme. We believe symbolic evaluation can also be used to improve the code
generated by PolyP [JJ97]. The authors of [HP01] show by example that in-
lining and standard transformation techniques can get rid of the overhead of
conversions between the types and their representations. The example presented
does not involve embedding-projections and only treats non-recursive conver-
sions from a data type to its generic representation. In contrast, our paper gives



a formal treatment of optimization of generics. Moreover, we have run GHC
6.0.1 with the maximum level of optimization (-O2) on derived instances of the
generic equality function: the result code was by far not free from the structural
representation overhead.

Initially, we have tried to optimize generics by using deforestation [Wad88]
and fusion [Chi94,AGS03]. Deforestation is not very successful because of its
demand that functions have to be in treeless form. Too many generic functions
do not meet this requirement. But even with a more liberal classification of
functions we did not reach an optimal result. We have extended the original
fusion algorithm with so-called depth analysis [CK96], but this does not work
because of the producer classification: recursive embedding-projections are no
proper producers. We also have experimented with alternative producer classi-
fications but without success. Moreover, from a theoretical point of view, the
adequacy of these methods is hard to prove. [Wad88] shows that with deforesta-
tion a composition of functions can be transformed to a single function without
loss of efficiency. But the result we are aiming at is much stronger, namely, all
overhead due to the generic conversion should be eliminated.

Our approach based on symbolic evaluation resembles the work that has been
done on the field of compiler generation by partial evaluation. E.g., both [ST96]
and [Jø92] start with an interpreter for a functional language and use partial
evaluation to transform this interpreter into a more or less efficient compiler or
optimizer. This appears to be a much more general goal. In our case, we are very
specific about the kind of results we want to achieve.

Partial evaluation in combination with typing is used in [DMP96,Fil99,AJ01].
They use a two-level grammar to distinguish static terms from dynamic terms.
Static terms are evaluated at compile time, whereas evaluation of dynamic terms
is postponed to run time. Simple type systems are used to guide the optimization
by classifying terms into static and dynamic. In contrast, in the present work
we do not make explicit distinction between static and dynamic terms. Our
semantics and type system are more elaborate: they support arbitrary algebraic
data types. The type system is used to reason about the result of the optimization
rather than to guide the optimization.

8 Conclusions and future work

The main contributions of the present paper are the following:

– We have introduced a symbolic evaluation algorithm and proved that the
result of the symbolic evaluation of an expression will not contain data con-
structors not belonging to the type of that expression.

– We have shown that for a large class of generic functions symbolic evaluation
can be used to remove the overhead of generic specialization. This class
includes generic functions that do not contain recursive types in their base
type.



Problems arise when involved generic function types contain recursive type
constructors. These type constructors give rise to recursive embedding projec-
tions which can lead to non-termination of symbolic evaluation. We could use
fusion to deal with this situation but then we have to be satisfied with a method
that sometimes produces less optimal code. It seems to be more promising to
extend symbolic evaluation with online termination analysis, most likely based
on the homeomorphic embedding [Leu98]. We already did some research in this
area but this has not yet led to the desired results.

We plan to study other optimization techniques in application to generic
programming, such as program transformation in computational form [TM95].
Generic specialization has to be adopted to generate code in computational form,
i.e. it has to yield hylomorphisms for recursive types.

Generics are implemented in Clean 2.0. Currently, the fusion algorithm of
the Clean compiler is used to optimize the generated instances. As stated above,
for many generic functions this algorithm does not yield efficient code. For this
reason we plan to use the described technique extended with termination analysis
to improve performance of generics.
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