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Abstract. GUI programming is notoriously tedious. By using generic
functions that create Graphical Editor Components (GECs), it becomes
possible to define user interfaces without any knowledge of low level
I/O handling. A GEC editor can automatically be derived for values of
any (user-defined) monomorphic (first order) type. With an editor the
application user can create new values of the type the editor is created
for.
In this way one obtains an editor for free for almost any type. Such a
free editor may not look fancy, but one can change the default look by
defining specialized versions of the generic function for certain types, e.g.
representing buttons, pull-down menus and the like. Furthermore, with
GECs the programmer can create an abstraction level separating the
view type and the domain type completely. As a result, the programmer
can easily make a library of suited graphical representations and freely
choose which representation to use. Consequently, working with GECs a
programmer can focus on the data type representing the user interaction
instead of on the nasty graphical details.
Editors can be easily combined to ensure that a change in one editor has
effects on the contents of others. One can combine editors by hand or
use an arrow library of editor combinators.
It is even possible to create editors for higher order types which enables
the creation of user interfaces in which functions can be typed in by
the user or read from disk at run-time. In the latter case, functions are
actually compiled functions that are dynamically linked into the running
application.
GECs are suited for rapid prototyping of real world applications, for
teaching and for debugging. This paper focuses on the use of the GEC
toolkit for functional programmers, only briefly explaining its inner work-
ings and underlying principles.

1 Introduction

In the last decade, Graphical User Interfaces (GUIs) have become the standard
for user interaction. Programming these interfaces can be done without much ef-
fort when the interface is rather static, and for many of these situations excellent
tools are available. However, when there is more dynamic interaction between



interface and application logic, such applications require tedious manual pro-
gramming in any programming language. Programmers need to be skilled in the
use of a large programming toolkit.

The goal of the Graphical Editor project is to obtain a concise programming
toolkit that is abstract, compositional, and type-directed. Abstraction is required
to reduce the size of the toolkit, compositionality reduces the effort of putting
together (or altering) GUI code, and type-directed automatic creation of GUIs
allows the programmer to focus on the data model. In contrast to visual pro-
gramming environments, programming toolkits can provide ultimate flexibility,
type safety, and dynamic behavior within a single framework. We use a pure
functional programming language (Clean [22]) because functional programming
languages have proven to be very suited for creating abstraction layers on top of
each other. Additionally, they have strong support for type definitions and type
safety.

Our programming toolkit utilizes the Graphical Editor Component (GEC) [6]
as universal building block for constructing GUIs. A GECt is a graphical editor
for values of any monomorphic first-order type t. This type-directed creation
of GECs has been obtained by generic programming techniques [8, 16, 15]. With
generic programming one defines a family of functions that depend on the struc-
ture of types. Although one structural element is the function type constructor
(→), it is fundamentally impossible to define a generic function that edits these
higher-order values directly, because pure functional programs cannot look inside
functions without losing referential-transparency.

The first order GEC toolkit is extended in two ways, such that it can con-
struct higher-order value editors. The first extension uses run-time dynamic typ-
ing [1, 21], which allows us to include them in the GEC toolkit, but this does
not allow type-directed GUI creation. It does, however, enable the toolkit to
use polymorphic higher-order functions and data types. The second extension
uses compile-time static typing, in order to gain monomorphic higher-order type-
directed GUI creation of abstract types. It uses the abstraction mechanism of the
GEC toolkit [7].

This paper is structured as follows. A brief introduction to generic program-
ming is given in Sect. 2. Section 3 contains an overview of the first-order GEC
toolkit. In Sect. 4 it is presented how GECs can be composed to form larger
applications. An abstraction for model-view programming is introduced in Sect.
5. Extensions for working with higher order types, dynamically and statically
are given in Sect. 6. Related work is discussed in Sect. 7 and conclusions are
summarized in Sect. 8.

Finally, a note on the implementation and the examples in this paper. The
project has been realized in Clean. Familiarity with Haskell is assumed, relevant
differences between Haskell and Clean are explained in footnotes. The GUI code
is mapped to Object I/O [4], which is Clean’s library for GUIs. Given sufficient
support for dynamic types, the results of this project can be transferred to
Generic Haskell [12], using the Haskell [20] port of Object I/O [3]. The complete
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code of all examples (including the complete GEC implementation in Clean) can
be downloaded from http://www.cs.kun.nl/∼clean/gec.

2 Generic Programming

Recently, generic functions have been added to Clean [15, 8]. A generic function
is an ultimate reusable function that allows reflection on the structure of any
data in a type safe way. It is not a single function, but actually a special kind of
overloaded function. One might be tempted by the idea to design some suitable
universal type, and define generic functions on values of this type, and convert
the changed value back to the actual type. However, it is a fundamental property
of the language that (without some kind of reflection) there cannot exist a single
universal type with which values of any type can be represented.

Instead, the types used by generic function definitions approximate the uni-
versal type idea. They do not constitute a single type but a family of types. Each
concrete user defined type is represented by a different combination of members
of this generic type family. Such a particular representation by itself has a type
that depends on the combination of values of the generic types that is used.

Hence, to define a generic function, instances have to be defined for a finite
number of types, the generic types, out of which any value of any type in the
language can be constructed. These generic types are:

::1 Unit = Unit

:: Either a b = Left a | Right b

:: Pair a b = Pair a b

:: TypeCons a = TypeCons InfoT a

:: DataCons a = DataCons InfoC a

The generic types consist of the basic types (Bool, Int, Real, . . . , which
are used to represent themselves), Unit (to represent a zero arity data con-
structor), Pair (product type, used to combine arguments of data construc-
tors), and Either (the sum type to indicate which data constructor of a certain
type is used). Furthermore, there are two special additional types TypeCons and
DataCons. They contain additional information (in InfoT and InfoC) about the
name and arity of the original type and data constructors. This is useful for
making generic functions that can parse or print. We need them to display the
values in our graphical editor.

With a collection of generic types, values of any user-defined type can be
represented, e.g. [1 ]:: [Int ] is represented by:

Once defined by the programmer, a generic function can be applied to values
of any concrete (user defined) type. The compiler automatically adds conversion
functions (bimaps) that lazily transform the concrete type to the corresponding

1 Type definitions are preceded by ::.
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TypeCons listT

(Left (DataCons consD

(Pair
1
(TypeCons listT

(Right (DataCons nilD Unit))
)

)
))

with
listT = {name="_List"2 ( ,arity=1}3
consD = {name="_Cons" ,arity=2}
nilD = {name="_Nil" , arity=0}

Fig. 1. The generic representation of [1 ] .

combination of generic types (see [16]. Furthermore, the generic types returned
by the generic function are converted back again to the actual type demanded.

Generic functions are very useful for defining work of a general nature. Be-
cause generic functions can be specialized for any specific concrete type as well,
they can also be customized easily. So far, the technique has been successfully
used to define functions like equality, map, foldr, as well as for the construction
of various parsers and pretty printers. Also, generic programming techniques
play an important role in the implementation of automatic test systems [18].
The GEC toolkit project is to our knowledge the first project in which generic
programming techniques are used for the creation of GUI applications.

3 The basic GEC Programming Toolkit

With the GEC programming toolkit [6], one constructs GUI applications in a
compositional way using a high level of abstraction. The basic building block is
the Graphical Editor Component (GEC). It is generated by a generic function,
which makes the approach type-directed.

Before explaining GECs in more detail, we need to point out that Clean
uses an explicit multiple environment passing style [2] for I/O programming.
As GECs are integrated with Clean Object I/O, the I/O functions that are pre-
sented in this paper are state transition functions on the program state (PSt ps).
The program state represents the external world of an interactive program, tai-
lored for GUI operations. In this paper the identifier env is a value of this type.
The uniqueness type system [9] of Clean ensures single threaded use of the en-
vironment. To improve the readability, uniqueness type attributes that actually
2 List, Cons, Nil, are the internal representations of the list-type and its construc-

tors.
3 {f0 = v0, . . . , fn = vn} denotes a record with field names fi and values vi.
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appear in the type signatures are not shown. Furthermore, the code has been
slightly simplified, leaving out a few details that are irrelevant for this paper.

Graphical Editor Components A GECt is an editor for values of type t. It
is generated with a generic function. The power of a generic scheme is that we
obtain an editor for free for any data type. This makes the approach particularly
suited for rapid prototyping.

The standard appearance of a GEC is illustrated by the following example:

module Editor

import StdEnv , StdIO , StdGEC

Start :: *World→ *World4

Start world = startIO MDI Void5 myEditor world

myEditor = generateEditor ("List" , [1 ] )

generateEditor :: (String , a) (PSt ps) → PSt ps6 |7 gGEC{|?|} a

generateEditor (windowName ,initialValue) env = newenv

where
(gecInterface , newenv) = gGEC{|?|} (windowName , initialValue , const id) env

The corresponding GUI will be:

Fig. 2. Generated editor for the standard list type, initially with value [1]

The generic function gGEC creates GECs. It takes a definition (GECDef t env) of
a GECt and creates the GECt object in the environment. It returns an interface
(GECInterface t env) to that GECt object. The environment env is in this case
(PSt ps), since gGEC uses Object I/O.

generic8 gGEC t :: GECFunction t (PSt ps)

:: GECFunction t env :==9 (GECDef t env) env→ (GECInterface t env ,env)

4 This function is equivalent with Haskell main::IO ().
5 Void is equivalent with Haskell ().
6 Clean separates function arguments by whitespace, instead of ->.
7 In a function type, | introduces all overloading class restrictions.
8 generic f t :: T (t) introduces a generic function f with type scheme T (t).
9 :== introduces a synonym type.
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The (GECDef t env) consists of three elements. The first is a string that iden-
tifies the top-level Object I/O element (window or dialog) in which the editor
must be created. The second is the initial value of type t of the editor. The
third is a callback function of type t→ env→ env. This callback function tells
the editor which parts of the program need to be informed of user actions. The
editor uses this function to respond to changes to the value of the editor by the
application user.

:: GECDef t env :== (String ,t ,CallBackFunction t env)
:: CallBackFunction t env :== t env→ env

The (GECInterface t env) is a record that contains all methods of the newly
created GECt.

:: GECInterface t env = { gecGetValue :: env→ (t ,env)
, gecSetValue :: Update t env→ env }

:: Update = YesUpdate | NoUpdate

The gecGetValue method returns the current value, and gecSetValue sets the
current value of the associated GECt object. The gecSetValue method has an
argument of type Update indicating whether or not the call-back function has to
be called propagating the change of the value through the system.

Alternative definition of myEditor: Corresponding GUI:

myEditor2

= generateEditor ("Integer",0)

myEditor3

= generateEditor ("String","Hello World!")

myEditor4

= generateEditor ("Tuple of Integer and String",(0,"Hello World!"))

myEditor5

= generateEditor ("Tree of Integers",Node Leaf 1 Leaf)

:: Tree a = Node (Tree a) a (Tree a) | Leaf

derive gGEC Tree

Fig. 3. Automatically derived editors for standard types.
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In Fig. 3 the basic use of the function gGEC is illustrated by showing the cor-
responding GUI for several alternative definitions of myEditor (as in the example
above). This generate an editor for the argument data type. All you have to
specify is the name of the window and an initial value. On the right the editor
is shown (with only for the Tree type also the complete window in which it
resides).

For standard types a version of gGEC is derived automatically. For user-defined
types it is required that explicitly a version of gGEC is derived for the given type.
For the type Tree this is explicitly done in the example. In the rest of this paper
these derives are not shown.

Programs can be constructed combining editors by tying together the various
gecSetValues and gecGetValues. In Sect. 4.2 it is shown how an arrow combinator
library [5] can be used for the necessary plumbing. For combining editors “by
hand” the following function can be very useful (its implementation is discussed
in Section 4.1):

selfGEC :: String (t→ t) t (PSt ps) → (PSt ps) | gGEC{|?|}10 t & bimap{|?|}11 ps

Given an f of type t→ t on the data model of type t and an initial value
v of type t, selfGEC gui f v creates the associated GECt using gGEC (hence the
context restriction). selfGEC creates a feedback loop that sends every edited
output value back as an input to the same editor, after applying the function f.

An example of the use of selfGEC is given by the following program that
creates an editor for a self-balancing binary tree:

myEditor = selfGEC "Tree"

balanceTree

(Node Leaf 1 Leaf)

In this example, we create a GECTree Int which displays the indicated initial
value Node Leaf 1 Leaf (upper screen shot). The user can manipulate this value
in any desired order, producing new values of type Tree Int (e.g., turning the
upper Leaf into a Node with the pull-down menu). Each time a new value is
created or edited, the feedback function balanceTree is applied. balanceTree takes
an argument of type Tree a and returns the tree after balancing it. The shape
and lay-out of the tree being displayed adjusts itself automatically. Default values
are generated by the editor when needed.
10 Use the generic instance of kind ? of gGEC.
11 The generic gGEC function requires an instantiation of the predefined generic function

bimap.
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Note that the only things that need to be specified by the programmer are
the initial value of the desired type, and the feedback function.

Customizing Types Clean allows generic functions to be overruled by cus-
tom definitions for arbitrary types. gGEC is no exception to this rule. The left
screenshot in Fig. 4 shows the default interface of the definition below for the
ubiquitous counter example, when created by:

myEditor = selfGEC "Counter" updCntr (0 ,Neutral)

updCntr :: Counter→ Counter

updCntr (n ,Up) = (n+1 ,Neutral)
updCntr (n ,Down) = (n-1 ,Neutral)
updCntr any = any

:: Counter :== (Int ,UpDown)
:: UpDown = Up | Down | Neutral

Fig. 4. The default editor (left) and the customized editor (right) of the counter ex-
ample.

Although the definition of the counter is a sensible one, its visual interface
clearly is not. In [6] we show how to change the representation of all values
of type Counter to the screenshot shown at the right in Fig. 4. Because it has
been explained in detail in [6], we will not repeat the code, but point out the
important points:

– In this particular example, only the definitions of ( ,) (hide the constructor
and place its arguments next to each other) and UpDown (display instead
of ) need to be changed.

– Normally gGEC creates the required logical (value passing) and visual infras-
tructure (GUI components). The programmer, when customizing gGEC, only
needs to define the visual infrastructure. The programmer must be knowl-
edgeable about Object I/O programming.

– The overruled instance works not only at the top-level. Every nested occur-
rence of the Counter type is now represented as shown right in Fig. 4.

For the creation of GUI applications, we need to model both specific GUI
elements (such as buttons) and layout control (such as horizontal, vertical lay-
out). In a way similar to the one shown above for the spin button, this has also
been done by specializing gGEC for a number of other types that either represent
GUI elements or layout. Below the predefined specialized editors are shown for a
number of types. The specialized editor for Display creates a non-editable GUI;
for Button a button is created; for <|> and ↔ two editors are created below each
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other, respectively next to each other; and finally Hide creates no GUI at all
which is useful for remembering state.

Type of the value given to myEditor: Corresponding GUI:

:: Display a = Display a

:: Button = Button String

| Pressed

:: <|> a b = a <|> b

:: <-> a b = a <-> b

:: Hide a = Hide a

Fig. 5. Effect of some predefined customized editors on “Hello World!”.

For large data structures it may be infeasible to display the complete data
structure. Customization can be used to define a GECt that creates a view on a
finite subset of such a large data structure with buttons to browse through the
rest of the data structure. This same technique can also be used to create GECs
for lazy infinite data structures. For these infinite data structures customization
is a must since clearly they can never be fully displayed.

4 Composition of GECs

In this section we present a number of examples to show how GECs can be com-
bined relying on the callback mechanism and method invocation (Sect. 4.1). In
Sect. 4.2 we show how these examples can be expressed using arrow combinators.

4.1 Manual composition of GECs

Functionally dependent GECs. The first composition example establishes
a functional dependency of type a→ b between a source editor GECa and desti-
nation editor GECDisplay b:

applyGECs :: (String ,String) (a→ b) a (PSt ps) → PSt ps

| gGEC{|?|} a & gGEC{|?|} b & bimap{|?|} ps

applyGECs (sa ,sb) f va env

]12 (gec_b , env) = gGEC{|?|} (sb , Display (f va) , const id) env

12 The ]-notation of Clean has a special scope rule such that the same variable name
can be used for subsequent non-recursive ]-definitions.
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] (gec_a , env) = gGEC{|?|} (sa , va , set gec_b f) env

= env

set :: (GECInterface b (PSt ps)) (a→ b) a (PSt ps) → (PSt ps)
set gec f va env = gec.gecSetValue NoUpdate (Display (f va)) env

The callback function of geca uses the gecSetValue interface method of gecb
to update the current b value whenever the user modifies the a value. As a simple
example, one can construct an interactive editor for lists (see Fig. 6) that are
mapped to balanced trees by:

myEditor = applyGECs ("List" ,"Balanced Tree") list2balancedTree [1 ,5 ,2]

Fig. 6. Turning lists into balanced binary trees.

Of course, the same can be done for binary functions with slightly more effort:

apply2GECs :: (String ,String ,String) (a→ b→ c) a b (PSt ps) → (PSt ps)
| gGEC{|?|} a & gGEC{|?|} b & gGEC{|?|} c & bimap{|?|} ps

apply2GECs (sa ,sb ,sc) f va vb env = env3

where
(gec_c ,env1) = gGEC{|?|} (sc ,Display (f va vb) ,const id) env

(gec_b ,env2) = gGEC{|?|} (sb ,vb ,combine gec_a gec_c (flip f)) env1

(gec_a ,env3) = gGEC{|?|} (sa ,va ,combine gec_b gec_c f) env2

combine :: (GECInterface y (PSt ps)) (GECInterface z (PSt ps))
(x→ y→ z) x (PSt ps) → PSt ps

combine gy gc f x env

] (y ,env) = gy.gecGetValue env

] env = gc.gecSetValue NoUpdate (Display (f x y)) env

= env

Notice that, due to the explicit environment passing style, it is trivial in Clean
to connect GECb with GECa and vice versa. In Haskell’s monadic I/O one needs
to tie the knot with fixIO.
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As an example, one can construct two interactive list editors, that are merged
and put into a balanced tree:

myEditor = apply2GECs ("List1" ,"List2" ,"Balanced Tree") makeBalancedTree [1 ] [1 ]
where

makeBalancedTree l1 l2 = list2balancedTree (l1 ++ l2)

with ++ :: [a ] [a ] → [a ] the Clean list concatenation operator. Fig. 7 shows
the result.

Fig. 7. Merging two lists into a balanced binary tree.

Self-correcting GECs. In this example we give the implementation of the self-
correcting editor function gGEC that was already used in Sect. 3. Self-correcting
editors update themselves in response to user edit operations. The function def-
inition is concise:

selfGEC :: String (a→ a) a (PSt ps) → (PSt ps) | gGEC{|?|} a & bimap{|?|} ps

selfGEC s f v env = env1

where (gec ,env1) = gGEC{|?|} (s ,f v ,λx→ gec.gecSetValue NoUpdate (f x)) env

As an example, one can now construct a self-sorting list as follows:

myEditor = selfGEC "Self Sorting List" sort [5 ,1 ,2]

with sort :: [a ] → [a ] | Ord a. This means that it is impossible for a user
of this editor to create a stable non-sorted list value.

Mutually Dependent GECs. In a similar way one can define mutually de-
pendent GECs. Take the following definition of mutualGEC.

mutualGEC :: String a (a→ b) (b→ a) (PSt ps) → (PSt ps)
| gGEC{|?|} a & gGEC{|?|} b & bimap{|?|} ps

mutualGEC gui va a2b b2a env = env2
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where (gec_b ,env1) = gGEC{|?|} (gui , a2b va , set gec_a b2a) env

(gec_a ,env2) = gGEC{|?|} (gui , va , set gec_b a2b) env1

This function displays two GECs. It is given an initial value va of type a,
a function a2b :: a → b, and a function b2a :: b → a. The gec a initially
displays va, while gec b initially displays a2b va. Each time one of the GECs
is changed, the other is updated automatically. The order in which changes are
made is irrelevant. For example, the application mutualGEC "Exchange Euros
to Pounds"{euros = 3.5} toPounds toEuros results in an editor that calcu-
lates the exchange between pounds and euros (see Fig. 8) and vice versa.

exchangerate = 1.4

:: Pounds = {pounds :: Real}
:: Euros = {euros :: Real}

toPounds :: Euros→ Pounds

toPounds {euros} = {pounds = euros / exchangerate}

toEuros :: Pounds→ Euros

toEuros {pounds} = {euros = pounds * exchangerate}

Fig. 8. Mutually dependent GECPounds and GECEuros in one window.

The example of Fig. 8 may look a bit like a tiny spreadsheet, but it is es-
sentially different since standard spreadsheets do not allow mutual dependencies
between cells. Notice also the separation of concerns: the way GECs are coupled
is defined completely separate from the actual functionality.

4.2 Combinators for GEC composition

The examples in Sect. 4.1 show that GECs can be composed by writing appro-
priate callback functions that use the GECInterface methods gecGetValue (get
the value of a GEC) and gecSetValue (set its value). This explicit plumbing can
become cumbersome when larger and more complex situations must be spec-
ified. What is needed, is a disciplined, and more abstract way of combining
components. Monads [26] and arrows [17] are the main candidates for such a
discipline. Monads abstract from computations that produce a value, whereas
arrows abstract from computations that, given certain input, produce values. Be-
cause GECs also have input and produce values, arrows are the best match. In
this section we show how arrows can be used successfully for the composition of
GECs, resulting in structures that resemble circuits of GECs (GecCircuit a b).

A GecCircuit a b generalizes GECs by accepting input values of type a

and produces output values of type b. Clearly, for every GECa there exists a
GecCircuit a a. This relation is expressed concisely with the function edit:
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edit :: String→ GecCircuit a a | gGEC{|?|} a

The arrow class definition for which we need to provide implementation for
our GEC arrows of type GecCircuit is given below. This class describes the basic
combinators >>> (serial composition), arr (function lifting), and first (saving
values across computations). The other definitions below can all be derived in
the standard way from these basic arrow combinators. They are repeated here
because we use them in our examples.

class Arrow arr where
arr :: (a→ b) → arr a b

(>>>) :: (arr a b) → (arr b c) → arr a c

first :: (arr a b) → arr (a ,c) (b ,c)

/∗ Combinators for free: ∗/
second :: (arr a b) → arr (c , a) (c , b)
second gec = arr swap>>> first gec>>> arr swap

where
swap t = (snd t ,fst t)

returnA :: arr a a

returnA = arr id

(<<<) infixr 1 :: (arr b c) (arr a b) → arr a c

(<<<) l r = r>>> l

(∗∗∗) infixr 3 :: (arr a b) (arr c d) → arr (a ,c) (b ,d)
(∗∗∗) l r = first l>>> second r

(&&&) infixr 3 :: (arr a b) (arr a c) → arr a (b ,c)
(&&&) l r = arr (λx→ (x ,x)) >>> (l ∗∗∗ r)

Arrow Examples

We use the arrow combinator definitions in the examples below. For each example
of Sect. 4.1, we give the definition using arrow combinators, and some of the
circuit structures as figures.

Functionally dependent GECs. The first arrow example (of which the exter-
nal view is given in Fig. 9) shows the arrow combinator version of the applyGECs

example of Sect. 4.1.

myEditor = startCircuit (applyGECs ("List" ,"Balanced Tree")
(Display o13 list2balancedTree)) [1 ,5 ,2]

applyGECs :: (String ,String) (a→ b) → GecCircuit a b

13 The infix operation o is the standard function composition in Clean.
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Fig. 9. applyGECs using arrows balancing a tree, external view.

| gGEC{|?|} a & gGEC{|?|} b

applyGECs (sa , sb) f = edit sa>>> arr f>>> edit sb

Again, two visual editors are shown. The first allows the user to edit the
(initial) list, and the second shows (and allows the user to edit) the resulting
balanced tree. In the hand coded examples, the initial value of a GEC was
specified at the time of its creation. Using the arrow combinators to construct a
GecCircuit, we specify the initial values for all GECs when we start the circuit.

Fig. 10. apply2GECs using arrows creating a balanced tree from two lists, external
view.

myEditor

= startCircuit (apply2GECs ("List1" ,"List2" ,"Balanced Tree") makeBalancedTree) ( [1 ] , [ 2 ] )
where

makeBalancedTree (l1 ,l2) = Display (list2balancedTree (l1 ++ l2))

apply2GECs :: (String ,String ,String) (a→ b→ c) → GecCircuit a b

| gGEC{|?|} a & gGEC{|?|} b & gGEC{|?|} c

apply2GECs (sa , sb , sc) f = edit sa ∗∗∗ edit sb>>> arr f>>> edit sc

The example above (see Fig. 10 for its external view) shows the arrow com-
binator version of the apply2GECs example. The initial values for the input lists
are paired, to allow the delayed initialization using startCircuit. The exam-
ple clearly shows that combining GECs using arrow combinators is much more
readable than the (often) recursive handwritten functions. The linear flow of in-
formation between GECs, using the>>>combinator, corresponds directly with the
code. Although splitting points in flow of information, using the ∗∗∗ combinator,
is less clear, it is still easier on the eyes than the examples of Sect. 4.1.
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Self-correcting GECs. The example below shows the arrow combinator ver-
sion of the selfGEC example (see its external view in Fig. 11).

Fig. 11. selfGEC using arrows, self balancing a tree, external view.

myEditor = startCircuit selfGEC Leaf

selfGEC :: String (a→ a) → GecCircuit a a | gGEC{|?|} a

selfGEC s f = feedback (arr f>>> edit s)

The way the feedback combinator constructs a feedback circuit is by taking
the value of the circuit and feeding it back again into the circuit. This is done
in such a way that it will not be propagated further when it arrives at a GEC
editor.

When a feedback circuit contains no editor at all, the meaning of the circuit
is undefined since in that case the calculation of the result would depend on itself
in a circular way. A feedback circuit in which each path of the circuit contains an
editor, is called well-formed. It is easy to check syntactically whether feedback
circuits are well-formed. Consider the following examples of non well-formed and
well-formed feedback circuits.

nonWellFormed1 = feedback (arr id>>> arr ((+) 1))
nonWellFormed2 = feedback (arr id&&& edit "Int">>>

arr (λ(x , y) → x + y) )
wellFormed = feedback (edit "Int">>> arr ((+) 1))

It should be clear that the selfGEC function is well-formed. This completes
the arrow combinator versions of the examples of Sect. 4.1. The counter example
(Sect. 3) below is also conveniently, and concisely, expressed using arr and>>>.

myEditor = startCircuit (selfGEC "Counter" updCntr) (0 ,Neutral)

As a somewhat larger, and more tantalizing, example we show the basic
structure of a GEC for GECs below. We use quite complex GECs that allow the
user to edit the type and visual appearance of another GEC. These editors are
not shown because we want to emphasize on GEC circuits here, not the internal
workings of the editors themselves. The information flow between these editors
can, again, nicely be expressed using the arrow combinators.

Both the editor for designing a GEC, as well as the editor that displays,
and allows the designer to interact with, the designed GEC use a well-formed
feedback loop. Auxiliary conversion, and state carrying, functions are lifted using
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the arr combinator. Both editors are combined (without feedback) using the >>>

combinator.

myEditor = startCircuit (designEditor >>>
arr convert >>>
applicationEditor) initvalue

designEditor :: GecCircuit DesignEditor DesignEditor

designEditor = feedback (
toDesignEditor >>>
edit "design" >>>
arr (updateDesign o fromDesignEditor))

applicationEditor :: GecCircuit ApplicationEditor ApplicationEditor

applicationEditor = feedback (
arr (toApplicEditor o updateApplication) >>>
edit "application" >>>
arr fromApplicEditor )

5 Compositional Model-View Programming

When constructing a GUI application, the need arises to incrementally build
and modify the GUI under construction. From what is explained in the previous
sections, this means that one needs to modify the data structures, and hence also
the dependent code, when changing the application. In this section we explain
how to obtain a good separation between the logic of a GUI application (the
model) and the way it is presented to the user (the view). Put in other words, it is
an instance of the model-view paradigm [19]. We show that it can be incorporated
smoothly within our toolkit by inventing a new way to realize abstraction and
composition based on the specialization mechanism that is used by the generic
framework of the GEC toolkit. In the following sections we show step by step
how this can be accomplished.

First, in Sect. 5.1 we show how to construct self-contained editors that take
care of their own update and conversion behavior. In Sect. 5.2 we turn these
self-contained editors into abstract reusable editors, thus encapsulating all in-
formation about their implementation and behaviour. However, abstract types
seem to be at odds with generic programming. We show in Sect. 5.2 how we
have managed to solve this problem. Finally, we show in Sect. 5.3 that these
self-contained editors are truly reusable elements themselves.

The technique is illustrated by means of the following running example. The
code fragment below shows the data model. The data model is a record of type
MyDataModel. The intention is that whenever the user edits one of the fields
value1 or value2, then these new values are summed and displayed in field
sum. This behavior is defined by updDataModel. We want to emphasize that
the types and code are ‘carved in stone’: they do not change in the rest of this
section.
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:: MyDataModel

= { d_value1 :: Int , d_value2 :: Int , d_sum :: Int }

initDataModel :: (Int ,Int) → MyDataModel

initDataModel (v1 ,v2)
= { d_value1 = v1 , d_value2 = v2 , d_sum = v1 + v2 }

updDataModel :: MyDataModel→ MyDataModel

updDataModel d = { d & d_sum = rec.d_value1 + rec.d_value2 }

myEditor = selfGEC "View on Data"

(toMyViewModel o updDataModel o fromMyViewModel)
(toMyViewModel (initDataModel (0 ,0)))

The aim of this section is to show that the view on this data model can be
varied without any modifications to this data model.

5.1 Defining Self-Contained Editors

If we want to reuse an existing editor, it is not enough to reuse its type. We also
want to reuse its functionality: each editor should take care of its own update. For
this purpose we need a type in which we can store the functionality of an editor.
If want to create a view v on a domain model d, we need to be able to replace
a standard editor for type d by a self-contained editor for some isomorphic type
v. Furthermore, since we generally also have to perform conversions between
these types, we like to store them as well, such that each editor can take care
of its own conversions. Finally, it is generally useful to take into account the
old value of v when converting from d since editors may have an internal state.
Therefore we define a new type, ViewGEC d v, in which we can store the update
and conversion functions:

:: ViewGEC d v = { d_val :: d

, d_oldv_to_v :: d→ (Maybe v) → v

, update_v :: v→ v

, v_to_d :: v→ d }

mkViewGEC :: d (d→ v) (v→ v) (v→ d) → ViewGEC d v

mkViewGEC d fdv fvv fvd = { d_val = d

, d_oldv_to_v = fdvv

, update_v = fvv

, v_to_d = fvd }
where

fdvv d Nothing = fdv d

fdvv _ (Just v) = v

Next, we define a specialized version of our generic editor gGEC for this type.
The top-level definition is given below. Notice that in gGEC{|ViewGEC|} two ad-
ditional parameters appear: gGECd and gGECv. This is caused by the fact that
generic functions in Clean are kind-indexed functions. As ViewGEC d v is of kind
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? → ? → ?, the generic function has two additional parameters, one for type d
and one for type v.

gGEC{|ViewGEC|} gGECd gGECv (viewGEC , viewGECCallback) env

= ({ gecSetValue = viewSetValue vInterface

, gecGetValue = viewGetValue vInterface } ,new_env)
where

(vInterface ,new_env) = gGECv (viewGEC.d_oldv_to_v viewGEC.d_val Nothing

,viewCallback vInterface

) env

The ViewGEC editor does the following. The value of type d is stored in the
ViewGEC record, but a d-editor (gGECd) for it is not created. Taking the old value
of v into account, the d-value is converted to a v-value using the conversion
function d_oldv_to_v :: d→ (Maybe v) → v. For this v-value we do generate a
generic v-editor (gGECv) to store and edit the v-value.

What remains to be defined are the callback function for the view editor
(viewCallback) and the GECInterface (ViewGEC d v) methods (viewSetValue and
viewGetValue). We discuss the most complicated one, the callback function, first.
Whenever the application user creates a new v-value with this editor, the call-
back function of the v-editor is called (viewCallback) and the update_v ::
v → v function is applied. This is similar to applying selfGEC update_v to
the corresponding new value of type v. The resulting new v-value is shown in
the v-editor again, and it is converted back to an d-value as well, using the
function v_to_d :: v→ d. This new d-value is then stored in the ViewGEC record
in the d_val field, and the call-back function for the ViewGEC editor is called
(viewGECCallback).

viewCallback vInterface new_v env

= viewGECCallback {viewGEC & d_val = new_d} new_env

where
new_upd_v = viewGEC.update_v new_v

new_env = vInterface.gecSetValue new_upd_v env

new_d = viewGEC.v_to_d new_upd_v

The two interface methods to write (viewSetValue) and read (viewGetValue)
are fairly straightforward. Writing a value of type ViewGEC d v amounts to writ-
ing a value of type v using the current old value of type v and the new value of
type d that is stored in the ViewGEC record. Reading a value of type ViewGEC d v

amounts to reading the current v value and wrap it up in the record after con-
verting it to a d value.

viewSetValue vInterface new_viewGEC env

= vInterface.gecSetValue new_v new_env

where
newb = new_viewGEC.d_oldv_to_v new_viewGEC.d_val (Just old_v)
(old_v ,new_env) = vInterface.gecGetValue env

viewGetValue vInterface env

= ({viewGEC & d_val = viewGEC.v_to_d current_v} ,new_env)
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where
(current_v ,new_env) = vInterface.gecGetValue env

The concrete behavior of the generated ViewGEC editor now not only de-
pends on the type, but also on the concrete information stored in a value of
type ViewGEC. A self-contained reusable editor, such as counterGEC below, is now
quickly constructed. The corresponding editor takes care of the conversions and
the update. The displayGEC does a trivial update (identity) and also takes care
of the required conversions.

counterGEC :: Int→ ViewGEC Int Counter

counterGEC i = mkViewGEC i toCounter updCntr fromCounter

displayGEC :: a→ ViewGEC a (Display a)
displayGEC x = mkViewGEC x toDisplay id fromDisplay

Making use of these new self-contained editors we can attach a view model to
the data model that was presented in the start of this section by giving appropri-
ate definitions of the conversion functions toMyViewModel and fromMyViewModel.
All other definitions remain the same.

:: MyViewModel = { v_value1 :: ViewGEC Int Counter

, v_value2 :: ViewGEC Int Counter

, v_sum :: ViewGEC Int (Display Int) }

toMyViewModel :: MyDataModel→ MyViewModel

toMyViewModel d = { v_value1 = counterGEC d.d_value1

, v_value2 = counterGEC d.d_value2

, v_sum = displayGEC d.d_sum }

fromMyViewModel :: MyViewModel→ MyDataModel

fromMyViewModel v = { d_value1 = v.v_value1.d_val

, d_value2 = v.v_value2.d_val

, d_sum = v.v_sum.d_val }
In the definition of toMyViewModel we can now choose any suited self-contained

editor. Each editor handles the needed conversions and updates itself automati-
cally. To obtain the value we are interested in, we just have to address the d_val

field.
The example shows that we have obtained the compositional behavior that

we wanted to have. One problem remains. If we would replace a self-contained
editor by another in toMyViewModel, all other code remains the same. However,
we do have to change the type of MyViewModel. In this type it is completely
visible what kind of editor has been used. The abstraction would be complete if
we also manage to create an abstract data type for our self-contained editors.

5.2 Abstract Self-Contained Editors

The concrete value of type ViewGEC d v is used by the generic mechanism to
generate the desired self-contained editors. The ViewGEC d v type depends on
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the type of the editor v that is being used. Put in other words, the type still
reveals information about the implementation of editor v. This is undesirable
for two reasons: one can not exchange views without changing types, and the
type of composite views reflects their composite structure. For these reasons, we
want a type that abstracts from the concrete editor type v.

However, if we manage to hide these types, how can the generic mechanism
generate the editor for it? The generic mechanism can only generate an editor for
a given concrete type, not for an abstract type of which the content is unknown.
The solution is as follows. When the abstraction is being made, we do know
the contents and its type. Hence, we can store the generic editor function (of
type GECFunction, see Sect.3) in the abstract data structure itself where the
abstraction is being made. The stored editor function can be applied later when
we really need to construct the editor. Therefore, we define an abstract data
structure (AGEC d) in which we store the ViewGEC d v and its corresponding
generic gGEC function for v. Technically this requires a type system that supports
existentially quantified types as well as rank-2 polymorphism.

:: AGEC d = ∃v: AGEC (ViewGEC d v) (∀ps: GECFunction (ViewGEC d v) (PSt ps))

mkAGEC :: (ViewGEC d v) → AGEC d | gGEC{|?|} v

mkAGEC viewGEC = AGEC viewGEC (gGEC{|*→*→*|} undef gGEC{|?|})

gGEC{|AGEC|} = . . . // similar to gGEC{|ViewGEC|}, but apply function stored in AGEC

The function mkAGEC creates the desired AGEC given a viewGEC. Looking at
the type of AGEC, the generic system can deduce that the editor to store has to
be a generic editor for type ViewGEC d v. To generate this editor, the generic
system by default requires an editor for type d and type v as well. We know
that in this particular case we do not use the d-editor at all. We can tell this to
the generic system by making use of the fact that generic functions in Clean are
kind indexed. The system allows us, if we wish, to explicitly specify the editors
for type d (undef) and type v (gGEC{|?|}) to be used by the editor for ViewGEC
(gGEC{|? → ? → ?|}). In this case we know that we do not need an editor for
type d (hence the undef), and use the standard generic editor for type v. The
overloading context restriction in the type of mkAGEC (| gGEC{|?|} v) states that
for making an AGEC d out of a ViewGEC d v only an editor for type v is required.

We also have to define a specialized version of gGEC for the AGEC type. The
corresponding generated editor applies the stored editor to the stored ViewGEC.

The types and kind indexed generic programming features we have used here
may look complicated, but for the programmer an abstract editor is easy to
make. To use a self-contained editor of type v as editor for type d, a ViewGEC
d v has to be defined. Note that the editor for type v is automatically derived
for the programmer by the generic system! The function mkAGEC stores them
both into an AGEC. The functions counterAGEC and displayAGEC show how
easy AGEC’s can be made. One might be surprised that the overloading context
for displayAGEC still requires a d-editor (| gGEC{|?|} d). This is caused by the
fact that in this particular case type d is used in the definition of type Display.
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counterAGEC :: Int→ AGEC Int

counterAGEC i = mkAGEC (counterGEC i)

displayAGEC :: d→ AGEC d | gGEC{|?|} d

displayAGEC x = mkAGEC (displayGEC x)

We choose to export AGEC d as a Clean abstract data type. This implies that
code that uses such an abstract value can not apply record selection to access the
d value. For this purpose we provide the following obvious projection functions
to retrieve the d-value from an AGEC d (^^) and to store a new d-value in an
existing AGEC d (the infix operator ^=).

(^^) :: (AGEC d) → d // Read current value
(^^) (AGEC viewGEC gGEC) = viewGEC.d_val

( =̂) infixl :: (AGEC d) d→ (AGEC d) // Set new value
( =̂) (AGEC viewGEC gGEC) nval = AGEC {viewGEC & d_val=nval} gGEC

Using abstract editors we can refine the view model data type and conversion
functions:

:: MyViewModel = { v_value1 :: AGEC Int

, v_value2 :: AGEC Int

, v_sum :: AGEC Int }

toMyViewModel :: MyDataModel→ MyViewModel

toMyViewModel d = { v_value1 = counterAGEC d.d_value1

, v_value2 = counterAGEC d.d_value2

, v_sum = displayAGEC d.d_sum }

fromMyViewModel :: MyViewModel→ MyDataModel

fromMyViewModel v = { d_value1 = ^^ v.v_value1

, d_value2 = ^^ v.v_value2

, d_sum = ^^ v.v_sum }
The advantage we have obtained now is that, if we want to pick another

editor, we only have to tell which one to pick in the definition of toMyViewModel.
The types used in MyViewModel all remain the same (AGEC Int), no matter which
editor is chosen. Also the definition of fromMyViewModel remains unaffected.

5.3 Abstract Editors Are Compositional

In order to show the compositional nature of abstract editors, we first turn the
running example into an abstract editor, say sumAGEC :: AGEC Int. In disguise,
it can be used itself as an Int-editor. Following the scheme introduced above,
this is done as follows:

sumAGEC :: Int→ AGEC Int // see counterAGEC (5.2)
sumAGEC i = mkAGEC (sumGEC i)
where sumGEC :: Int→ ViewGEC Int MyViewModel // see counterGEC (5.1)

sumGEC i = mkViewGEC i toV updV fromV

21



where toV = toMyViewModel o toMyData

fromV = fromMyData o fromMyViewModel

updV = toMyViewModel o updDataModel o fromMyViewData

toMyData i = initData (0 ,i)
fromMyData d = d.sum

Now sumAGEC, counterAGEC, and displayAGEC are interchangeable compo-
nents. If we want to experiment with variants of the running example, we pick
the instance of our choice in the toMyViewModel function (see Fig. 12).

Alternative definition of toMyViewModel: Corresponding GUI:

toMyViewModel1 d

= { v_value1 = idAGEC d.d_value1

, v_value2 = idAGEC d.d_value2

, v_sum = displayAGEC d.d_sum }

toMyViewModel2 d

= { v_value1 = idAGEC d.d_value1

, v_value2 = counterAGEC d.d_value2

, v_sum = displayAGEC d.d_sum }

toMyViewModel3 d

= { v_value1 = counterAGEC d.d_value1

, v_value2 = sumAGEC d.d_value2

, v_sum = displayAGEC d.d_sum }

Fig. 12. Plug-and-play your favourite abstract editors to experiment with the running
example. The only code that changes is the function toMyViewModel.

We are setting up a library of abstract components. One of these library
functions idAGEC (which takes a value of any type and promotes it to an abstract
editor component for that type) is used in the example above. With this library
it will be possible to rapidly create GUIs in a declarative style. This can be very
useful e.g. for prototyping, education, tracing and debugging purposes. Below,
we summarize only those functions of the collection that are used in the examples
in this paper:

vertlistAGEC :: [a ] → AGEC [a ] | gGEC{|?|} a // all elements displayed in a column
counterAGEC :: a → AGEC a | gGEC{|?|} , IncDec a // a special number editor
hidAGEC :: a → AGEC a // identity, no editor
displayAGEC :: a → AGEC a | gGEC{|?|} a // identity, non-editable editor
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6 Higher-Order GECs

In this section we show how to extend GECs with the ability to deal with
functions and expressions. Because functions are opaque, the solution requires
a means of interpreting functional expressions as functional values. Instead of
writing our own parser/interpreter/type inference system we use the Esther shell
[24] (Sect. 6.1).

Esther enables the user to enter expressions (using a subset of Clean) that
are dynamically typed, and transformed to values and functions using compiled
code. It is also possible to reuse earlier created functions, which are stored on
disk. Its implementation relies on the dynamic type system [1, 21, 25] of Clean.

The shell uses a text-based interface, and hence it makes sense to create a
special string-editor (Sect. 6.1), which converts any string into the corresponding
dynamically typed value. This special editor has the same power as the Esther
command interpreter and can deliver any dynamic value, including higher-order
polymorphic functions. In addition we show that the actual content of a dy-
namic value can be influenced by the very same generic mechanism, using type
dependent functions (Sect. 6.2). With this mechanism, dynamics can be used in
a type-directed way, but only for monomorphic types in dynamics.

6.1 Dynamically Typed Higher-Order GECs

We first introduce the foundations of the Esther shell, and proceed by showing
how to construct an editor for functions.

Dynamics in Clean A dynamic is a value of static type Dynamic, which contains
an expression as well as a representation of its static type, e.g.,dynamic 42 :: Int,
dynamic map fst :: ∀a b: [ (a , b) ] → [a ] . Basically, dynamic types turn every
(first and higher-order) type into a first-order type, while providing run-time
access to the original type and value.

Function alternatives and case patterns can match on values of type Dynamic.
Such a pattern match consists of a value pattern and a type pattern, e.g., [4 , 2]

:: [Int ] . The compiler translates a pattern match on a type into run-time type
unification. If the unification is successful, type variables in a type pattern are
bound to the offered type. Applying dynamics at run-time will be used to create
an editor that changes according to the type of entered expressions (Sect. 6.1,
Example 2).

dynamicApply :: Dynamic Dynamic→ Dynamic

dynamicApply (f :: a→ b) (x :: a) = dynamic f x :: b

dynamicApply df dx = dynamic "Error" :: String

dynamicApply tests if the argument type of the function f, inside its first
argument, can be unified with the type of the value x, inside the second argument.
dynamicApply can safely apply f to x, if the type pattern match succeeds. It yields
a value of the type that is bound to the type variable b by unification, wrapped
in a dynamic. If the match fails, it yields a string in a dynamic.
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Type variables in type patterns can also relate to type variables in the static
type of a function. A ^ behind a variable in a pattern associates it with the same
type variable in the static type of the function.

matchDynamic :: Dynamic→ t | TC t

matchDynamic (x :: t^) = x

The static type variable t, in the example above, is determined by the static
context in which it is used, and imposes a restriction on the actual type that is
accepted at run-time by matchDynamic. The function becomes overloaded in the
predefined TC (type code) class. This makes it a type dependent function [21].

The dynamic run-time system of Clean supports writing dynamics to disk and
reading them back again, possibly in another program or during another execu-
tion of the same program. This provides a means of type safe communication,
the ability to use compiled plug-ins in a type safe way, and a rudimentary basis
for mobile code. The dynamic is read in lazily after a successful run-time unifi-
cation. The amount of data and code that the dynamic linker links is, therefore,
determined by the evaluation of the value inside the dynamic.

writeDynamic :: String Dynamic env→ (Bool ,env) | FileSystem env

readDynamic :: String env→ (Bool ,Dynamic ,env) | FileSystem env

Programs, stored as dynamics, have Clean types and can be regarded as a
typed file system. We have shown that dynamicApply can be used to type check
any function application at run-time using the static types stored in dynamics.
Combining both in an interactive ‘read expression – apply dynamics – evaluate
and show result’ loop, already gives a simple shell that supports the type checked
run-time application of programs to documents. The composeDynamic function
below, taken from the Esther shell, applies dynamics and infers the type of an
expression.

composeDynamic :: String env→ (Dynamic ,env) | FileSystem env

showValueDynamic :: Dynamic→ String

composeDynamic expr env parses expr. Unbound identifiers in expr are resolved
by reading them from the file system. In addition, overloading is resolved. Using
the parse tree of expr and the resolved identifiers, the dynamicApply function
is used to construct the (functional) value v and its type τ . These are packed
in a dynamic v :: τ and returned by composeDynamic. In other words, if env `
expr :: τ and [[expr]]env = v then composeDynamic expr env = (v :: τ , env). The
showValueDynamic function yields a string representation of the value inside a
dynamic.

Creating a GEC for the type Dynamic With the composeDynamic func-
tion, an editor for dynamics can easily be constructed. This function needs an
appropriate environment to access the dynamic values and functions (plug-ins)
that are stored on disk. The standard (PSt ps) environment used by the generic
gGEC function (Sect. 3) is such an environment. This means that we can simply
use composeDynamic in a specialized editor to offer the same functionality as the
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command line interpreter. Instead of Esther’s console we use a String editor as
interface to the application user. In addition we need to convert the provided
string into the corresponding dynamic. We therefore define a composite data
type DynString and a specialized gGEC-editor for this type (a GECDynString) that
performs the required conversions.

:: DynString = DynStr Dynamic String

The choice of the composite data type is motivated mainly by simplicity
and convenience: the string can be used by the application user for typing in
the expression. It also stores the original user input, which cannot be extracted
from the dynamic when it contains a function.

Now we specialize gGEC for this type DynString. The complete definition of
gGEC{|DynString|} is given below.

gGEC{|DynString|} (gui ,DynStr _ expr ,dynStringUpdate) env

] (stringGEC ,env) = gGEC{|?|} (gui ,expr ,stringUpdate dynStringUpdate) env

= ({ gecSetValue = dynSetValue stringGEC.gecSetValue

, gecGetValue = dynGetValue stringGEC.gecGetValue } ,env)
where dynSetValue stringSetValue (DynStr _ expr) env

= stringSetValue expr env

dynGetValue stringGetValue env

] (nexpr ,env) = stringGetValue env

] (ndyn , env) = composeDynamic nexpr env

= (DynStr ndyn nexpr ,env)
stringUpdate dynStringUpdate nexpr env

] (ndyn ,env) = composeDynamic nexpr env

= dynStringUpdate (DynStr ndyn nexpr) env

The created GECDynString displays a box for entering a string by calling
the standard generic gGEC{|?|} function for the value expr of type String, yield-
ing a stringGEC. The DynString-editor is completely defined in terms of this
String-editor. It only has to take care of the conversions between a String and
a DynString. This means that its gecSetValue method dynSetValue simply sets
the string component of a new DynString in the underlying String-editor. Its
gecGetValue method dynGetValue retrieves the string from the String-editor, con-
verts it to the corresponding Dynamic by applying composeDynamic, and combines
these two values in a DynString-value. When a new string is created by the appli-
cation user, the callback function stringUpdate is evaluated, which invokes the
callback function dynStringUpdate (provided as an argument upon creation of
the DynString-editor), after converting the String to a DynString.

It is convenient to define a constructor function mkDynStr that converts any
input expr, that has value v of type τ , into a value of type DynString guaranteeing
that if v :: τ and [[expr]] = v, then (DynStr (v::τ) expr) :: DynString.

mkDynStr :: a→ DynString | TC a

mkDynStr x = let dx = dynamic x in DynStr dx (showValueDynamic dx)
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Function Test Example. We construct an interactive editor that can be used
to test functions. It can be a newly defined function, say λx→ x^2, or any existing
function stored on disk as a Dynamic. Hence the tested function can vary from a
small function, say factorial, to a large complete application.

:: MyRecord = { function :: DynString

, argument :: DynString

, result :: DynString }
myEditor = selfGEC "test" guiApply (initval id 0)
where

initval f v = { function = mkDynStr f

, argument = mkDynStr v

, result = mkDynStr (f v) }
guiApply r=:14{ function = DynStr (f::a→ b) _

, argument = DynStr (v::a) _ }
= {r & result = mkDynStr (f v)}

guiApply r = r

The type MyRecord is a record with three fields, function, argument, and result,
all of type DynString. The user can use this editor to enter a function definition
and its argument. The selfGEC function will ensure that each time a new string
is created with the editor "test", the function guiApply is applied that provides
a new value of type MyRecord to the editor. The function guiApply tests, in a
similar way as the function dynamicApply (see Sect. 6.1), whether the type of the
supplied function and argument match. If so, a new result is calculated. If not,
nothing happens.

This editor can only be used to test functions with one argument. What
happens if we edit the function and the argument in such a way that the result
is not a plain value but a function itself? Take, e.g., as function the twice func-
tion λf x→ f (f x), and as argument the increment function ((+) 1). Then the
result is also a function λx→ ((+) 1) ((+) 1 x). The editor displays <function>

as result. There is no way to pass an argument to the resulting function.
With an editor like the one above, the user can enter expressions that are

automatically converted into the corresponding Dynamic value. As in the shell,
unbound names are expected to be dynamics on disk. Illegal expressions result
in a Dynamic containing an error message.

To have a properly higher-order dynamic application example one needs an
editor in which the user can type in functions of arbitrary arity, and subse-
quently enter arguments for this function. The result is then treated such that,
if it is a function, editors are added dynamically for the appropriate number of
arguments. This is explained in the following example.

Expression Test Example. We construct a test program that accepts arbi-
trary expressions and adds the proper number of argument editors, which again
can be arbitrary expressions. The number of arguments cannot be statically de-
termined and has to be recalculated each time a new value is provided. Instead
14 x =:e binds x to e.
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of an editor for a record we therefore create an editor for a list of tuples. Each
tuple consists of a string used to prompt to the user, and a DynString-value. The
tuple elements are displayed below each other using the predefined list editor
vertlistAGEC (Sect. 5.3) and access operator ^^ (Sect. 5.2). The selfGEC func-
tion is used to ensure that each change made with the editor is tested with the
guiApply function and the result is shown in the editor.

myEditor = selfGEC "test" (guiApply o (^^))
(vertlistAGEC [show "expression " 0])

where
guiApply [f:args ]

= vertlistAGEC [f:check (fromDynStr f) args ]
where

check (f::a→ b) [arg=:(_ ,DynStr (x::a) _):args ]
= [arg : check (dynamic f x) args ]

check (f::a→ b) _ = [show "argument " "??" ]
check (x::a) _ = [show "result " x ]

show s v = (Display s ,mkDynStr v)

fromDynStr (_ ,DynStr d _) = d

The key part of this example is formed by the function check which calls
itself recursively on the result of the dynamic application. As long as function
and argument match, and the resulting type is still a function, it requires another
argument which is checked for type consistency. If the resulting type is a plain
value, it is evaluated and shown using the predefined function display, which
creates a non-editable editor that just displays its value. As soon as a type
mismatch is detected, a question mark is displayed to prompt the user to try
again. With this editor, any higher-order polymorphic function can be entered
and tested.

6.2 Statically Typed Higher-order GECs

The editors presented in the previous section are flexible because they deliver a
Dynamic (packed into the type DynString). They have the disadvantage that the
programmer has to program a check, such as the check function in the previous
example, on the type consistency of the resulting Dynamics.

In many applications it is statically known what the type of a supplied func-
tion must be. In this section we show how the run-time type check can be replaced
by a compile-time check, using the abstraction mechanism for GECs. This gives
us a second solution for higher-order types that is statically typed, which allows,
therefore, type-directed generic GUI creation.

Adding Static Type Constraints to Dynamic GECs The abstraction
mechanism provided by AGECs is used to build type-directed editors for higher-
order types, which check the type of the entered expressions dynamically. These
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statically typed higher-order editors are created using the function dynamicAGEC.
The full definition of this function is specified and explained below.

dynamicAGEC :: d→ AGEC d | TC d

dynamicAGEC x = mkAGEC { d_val=x , d_oldv_to_v=toView
, update_v=updView x , v_to_d=fromView x }

where toView newx Nothing = let dx = mkDynStr newx in (dx ,hidAGEC dx)
toView _ (Just oldx) = oldx

fromView :: d (DynString ,AGEC DynString) → d | TC d

fromView _ (_ ,oldx) = case ^^oldx of DynStr (x::d^) _→ x

updView :: d (DynString ,AGEC DynString)
→ (DynString ,AGEC DynString) | TC d

updView _ (newx=:(DynStr (x::d^) _) ,_) = (newx ,hidAGEC newx)
updView _ (_ ,oldx) = (^^oldx ,oldx)

The abstract Dynamic editor, which is the result of the function dynamicAGEC

initially takes a value of some statically determined type d. It converts this value
into a value of type DynString, such that it can be edited by the application
user as explained in Sect. 6.1. The application user can enter an expression of
arbitrary type, but now it is ensured that only expressions of type d are approved.

The function updView, which is called in the abstract editor after any edit
action, checks, using a type pattern match, whether the newly created dynamic
can be unified with the type d of the initial value (using the ^-notation in the
pattern match as explained in Sect. 6.1). If the type of the entered expression
is different, it is rejected and the previous value is restored and shown. To do
this, the abstract editor has to remember in its internal state also the previously
accepted correctly typed value. Clearly we do not want to show this part of the
internal state to the application user. This is achieved using the abstract editor
hidAGEC (Sect. 5.3), which creates an invisible editor, i.e., a store, for any type.

Function Test Example, revisited. Consider the following variation of the
function test example on page 25:

:: MyRecord a b = { function :: AGEC (a→ b)
, argument :: AGEC a

, result :: AGEC b }
myEditor = selfGEC "test" guiApply (initval ((+) 1.0) 0.0)
where

initval f v = { function = dynamicAGEC f

, argument = dynamicAGEC v

, result = displayAGEC (f v) }
guiApply myrec=:{ function = af , argument = av }

= {myrec & result = displayAGEC ((^^af) (^^av))}
The editor above can be used to test functions of a certain statically de-

termined type. Due to the particular choice of the initial values ((+) 1.0 ::

Real→ Real and 0.0 :: Real), the editor can only be used to test functions of type
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Real→ Real applied to arguments of type Real. Notice that it is now statically
guaranteed that the provided dynamics are correctly typed. The dynamicAGEC-
editors take care of the required checks at run-time and they reject ill-typed
expressions. The programmer therefore does not have to perform any checks
anymore. The abstract dynamicAGEC-editor delivers a value of the proper type
just like any other abstract editor.

The code in the above example is not only simple and elegant, but it is
also very flexible. The dynamicAGEC abstract editor can be replaced by any other
abstract editor, provided that the statically derived type constraints (concerning
f and v) are met. This is illustrated by the next example.

Function Test Example, revisited. If one prefers a counter as input editor
for the argument value, one only has to replace dynamicAGEC by counterAGEC in
the definition of initval:

initval f v = { function = dynamicAGEC f

, argument = counterAGEC v

, result = displayAGEC (f v) }

The dynamicAGEC is typically used when expression editors are preferred over
value editors of a type, and when application users need to be able to enter
functions of a statically fixed monomorphic type.

One can create an editor for any higher-order type t, even if it contains poly-
morphic functions. It is required that all higher-order parts of t are abstracted,
by wrapping them with an AGEC type. Basically, this means that each part of t
of the form a→ b must be changed into AGEC (a→ b). For the resulting type t’
an edit dialog can be automatically created, e.g., by applying selfGEC. However,
the initial value that is passed to selfGEC must be monomorphic, as usual for
any instantiation of a generic function. Therefore, editors for polymorphic types
cannot be created automatically using this statically typed generic technique.
As explained in Sect. 6.1 polymorphic types can be handled with dynamic type
checking.

Summarizing, we have shown in this section that we can create editors that
can deal with higher order types. We can create dynamically typed higher-order
editors, which have the advantages that we can deal with polymorphic higher
order types and overloading. This has the disadvantage that the programmer
has to check type safety in the editor. The compiler can ensure type correct-
ness of higher-order types in statically typed editors, but they can only edit
monomorphic types.

7 Related Work

We distinguish three areas of related work:

Grammars instead of types: Taking a different perspective on the type-direc-
ted nature of our approach, one can argue that it is also possible to obtained
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editors by starting from a grammar specification instead of a type. Such toolkits
require a grammar as input and yield an editor GUI as result. Projects in this fla-
vor are for instance the recent Proxima project [23], which relies on XML and its
DTD (Document Type Definition language), and the Asf+Sdf Meta-Environment
[10] which uses an Asf syntax specification and Sdf semantics specification. The
major difference with such an approach is that these systems need both a gram-
mar and some kind of interpreter. In our system higher-order elements are im-
mediately available as a functional value that can be applied and passed to other
components.

GUI programming toolkits: From the abstract nature of the GEC toolkit it
is clear that we need to look at GUI toolkits that also offer a high level of abstrac-
tion. Most GUI toolkits are concerned with the low level management of widgets
in an imperative style. One well-known example of an abstract, compositional
GUI toolkit based on a combinator library is Fudgets [11]. These combinators
are required for plumbing when building complex GUI structures from simpler
ones. In our system far less plumbing is needed. Most work is done automat-
ically by the generic function gGEC. The only plumbing needed in our system
is for combining the GEC-editors themselves. Any application will only have a
very limited number of GEC-editors. Furthermore, the Fudget system does not
provide support for editing function values or expressions.

Because a GECt is a t-stateful object, it makes sense to have a look at
object oriented approaches. The power of abstraction and composition in our
functional framework is similar to mixins [13] in object oriented languages. One
can imagine an OO GUI library based on compositional and abstract mixins
in order to obtain a similar toolkit. Still, such a system lacks higher-order data
structures.

Visual programming languages: Due to the extension of the GEC program-
ming toolkit with higher-order types, visual programming languages have come
within reach as application domain. One interesting example is the Vital sys-
tem [14] in which Haskell-like scripts can be edited. Both systems allow direct
manipulation of expressions and custom types, allow customization of views,
and have guarded data types (the selfGEC function). In contrast with the Vital
system, which is a dedicated system and has been implemented in Java, our sys-
tem is a general purpose toolkit. We could use our toolkit to construct a visual
environment in the spirit of Vital.

8 Conclusions

We have presented the GEC toolkit for rapid prototyping of type safe interactive
applications. The toolkit

1. produces type-safe interactive applications composed from Graphical Editor
Components;

30



2. has a high degree of automation due to the use of generic generative pro-
gramming techniques;

3. can be used for first order and higher order types;
4. can be customized to create any kind of user interface;
5. allows abstraction using model-view programming to hide details and allow

type-safe view changes;
6. is compositional on various levels:

Types standard composition of types lead to composition of corresponding
graphical editor components;

Expressions the user can enter expressions in which values and functions
can be defined/used compositionally; these functions can even be com-
piled functions (possibly taken from complete applications) that are read
from disk, linked in dynamically and applied in a compositional way;

GECs GECs can be composed in an ad-hoc way by standard functional
programming or in a structured way using arrow combinators;

AGECs AGECs can be composed in a statically type safe way.
7. enables the programmer to focus on a data type representing the interaction

with the user instead of on the many nasty details of a graphical toolkit.
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