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Abstract. Creating GUI programs is hard even for prototyping pur-
poses. Using the model-view paradigm makes it somewhat simpler since
the model-view paradigm dictates that the model contains no GUI pro-
gramming, as this is done by the views. Still, a lot of GUI programming
is needed to implement the views.
We present a new method for constructing GUI applications that fits well
in the model-view paradigm. Novel in our approach is that the views also
contain no actual GUI programming. Instead, views are constructed in
a fully compositional way by defining a model of the view. We use a
technique developed earlier to generate the GUI part. We show how the
method supports flexibility, compositionality and incremental change by
introducing abstract components in the view models.
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1 Introduction

The design of high quality user interfaces is an iterative process that has a great
demand for rapid prototyping and flexible incremental change of versions of the UI
under construction [14]. In practice, writing effective Graphical User Interfaces (GUI)
with programming toolkits for even small programs (500 lines of code) is a complicated
task. This is caused by two major obstacles:

A. The programmer needs to be skilled in the api of the used library and the tools
that help him in his task (such as resource editors).

B. GUI programs tend to tie up the logic of the application with the realization of its
user interface.

In this paper we show how contemporary functional language techniques using
generic programming and strong type system features (existential types and rank-
2 polymorphism) can be employed to obtain a programming toolkit that eliminates
these obstacles. Even though the used techniques are advanced, the resulting api of
this toolkit is concise, and the method-of-use is not hard, as will be demonstrated in
this paper.

The system described in this paper fits well in the well-known model-view paradigm
[12], introduced by Trygve Reenskaug in the language Smalltalk (the paradigm was then



named the model-view-controller paradigm). In our approach the data type plays the
model role, and the views are derived automatically from the generic decomposition of
values of that type. The controller role is dealt with by both the automatically derived
communication infrastructure and the views (as they need to handle user actions).

In our method we will eliminate obstacle A by using Graphical Editor Components
[3]. A GECm is an interactive editor (the view) to edit values of arbitrary data type
m (the model) in a type-safe way. Using generic programming techniques, the view is
automatically derived from the type m of the model. Hence, the programmer does not
need to know about GUIs. One might gather that this is also sufficient to eliminate
obstacle B, but this is not the case. The obstacle is still present in two ways:

B.1. The type of the model not only represents the data that is used by the appli-
cation logic, but at the same time it represents the information that is needed
to automatically generate the intended view. In this sense, the view is not well
separated from the model.

B.2. A different editor can only be specified by defining a different type. Consequently,
changing views incrementally implies changing types which in its turn implies
further changes reducing flexibility.

In this paper, B.1 is dealt with by imposing a strict separation of concerns of the
model. Instead of one model, the programmer defines a data model and a view model and
their relation in the form of two conversion functions. Then, the GEC system can be
used to derive the intended GUI from the view model. B.2 is dealt with by introducing
abstract views (AGECs) that can be used as components of the view model. Due to
the power of abstraction AGECs are fully compositional.

The resulting system encourages an incremental methodology of programming
GUIs. For rapid prototyping purposes, one starts with identical types for the data
model and view model and the trivial identity transformation functions. Then, one can
start to change views incrementally by changing instances of abstract component views
in the view model.

The language that we have used is Clean, but it should be noted that the approach
is applicable to other functional languages (with other I/O libraries) that support the
above mentioned features as well, for instance Generic Haskell [9]. In principle, this
can be done with any I/O library but using the Haskell Object I/O library [2, 5] will
minimize the effort of porting the system.

This paper is organized as follows. In Sect. 2 we recapitulate the concept of a
GEC. Using these GECs as basic building blocks, we show in Sect. 3 how we eliminate
obstacles B.1 and B.2, giving us the intended system. We present related work in Sect.
4 and conclude and point to future work in Sect. 5.

2 The Concept of a Graphical Editor Component

In [3] we introduced the concept of a Graphical Editor Component, a GECt. A GECt

is an editor for values of type t. It is provided with an initial value of type t and it is
guaranteed that an application user can only use the editor to create values of type t.
At all times, a GECt contains a value of type t.

A GECt is generated with a generic function [10, 4]. A generic function is a meta
description on the structure of types. For any concrete type t, the compiler is able to
automatically derive an instance function of this meta description for the given type.



Currently, we support all Clean types, with exception of function and abstract types.
The power of a generic scheme is that we obtain an editor for free for any data type.
This makes the approach particularly suited for rapid prototyping.

Before explaining GECs in more detail, we need to point out that Clean uses an
explicit environment passing style [1] for I/O programming. This style is supported by
the uniqueness type system [6] of Clean. Because GECs are integrated with Clean Object
I/O, the I/O functions that are presented in this paper are state transition functions
on the program state (PSt st). The program state represents the external world of an
interactive program, tailored for GUI operations. In this paper the identifier env is a
value of this type. In the Haskell variant of Object I/O, a state monad is used instead.
The uniqueness type system of Clean ensures single threaded use of the environment.
Uniqueness type attributes that actually appear in the type signatures are not shown
in this paper, in order to simplify the presentation.

2.1 Creating GECts

A GECt is a graphical editor component to edit values of type t. These editors are cre-
ated with the generic function gGEC. This function takes a definition (GECDef t env)
of a GECt and creates the GECt object in the environment. It returns an interface
(GECInterface t env) to that GECt object. It is a (PSt ps) transition function be-
cause gGEC modifies the environment.

generic gGEC t :: GECFunction t (PSt ps)

:: GECFunction t env :== (GECDef t env) → env → (GECInterface t env,env)

A GECt is defined by GECDef t env which consists of two elements. The first is a
value of type t which will be the initial value of the editor. The second is a call-back
function of type t → env → env. The editor must know what parts of the program are
interested in changes of the current value that are done by the user. This information
is provided by its ‘context’ in the form of this call-back function. The editor uses this
function when the user has changed the current value of the editor.

:: GECDef t env :== (t, CallBackFunction t env)

:: CallBackFunction t env :== t → env → env

The GECInterface t env is a record that contains all methods that the ‘context’
can use to handle the newly created GECt.

:: GECInterface t env = { gecGetValue :: env → (t,env)

, gecSetValue :: t → env → env }

The method gecGetValue can be used to obtain the currently stored value of type
t from the GECt component. The method gecSetValue can be used to set a new value
in the corresponding GECt. GECInterface contains several other useful methods for a
program that are not shown above. These are methods to open and close the created
GECt and to show or hide its appearance.

The appearance of a standard GECt is illustrated by the following example. Assume
that the programmer has defined the type Tree a as shown below and consider the
following application of gGEC:



:: Tree a = Node (Tree a) a (Tree a) | Leaf

gGEC (Node Leaf 1 Leaf, const id) env

This creates a GECTree Int which displays the indicated initial value (see Fig. 1).
The application user can manipulate this value in any desired order thus producing
new values of type Tree Int. Each time a new value is created, the call-back function
is applied automatically. The call-back function of this first example (const id) has no
effect. The shape and lay-out of the tree being displayed adjusts itself automatically.
Default values are generated by the editor when needed.

Fig. 1. The initial Graphical Editor Component for a tree of integers (Left) and a
changed one (Right: with the pull-down menu the upper Leaf is changed into a Node).

2.2 Self-adjusting Graphical Editor Components

In [3] a number of examples are given to show how graphical editor components can
be combined relying on the call-back mechanism and method invocation. In this paper
we only use one particular form of combination, namely that of an editor that itself
reacts to edit operations by the user. In this way, an editor can be self-correcting: any
property on edit values of type a that is expressable by means of a function f :: a →
a can be considered to be an invariant on the editor. As an example, we can construct
a sorted-list editor by applying the sort function to all edited values.

Self-adjusting editors can be created with the concise function selfGEC:

selfGEC :: (a → a) a (PSt ps) → (PSt ps) | gGEC{|a|}
selfGEC f va env = new_env

where
(thisGEC,new_env) = gGEC (f va, λnva. thisGEC.gecSetValue (f nva)) env

The function selfGEC, when applied to a function f :: a → a and value va ::

a, creates a GECa with initial value (f va). The call-back function of this GECa is
quite remarkable. At each change of value the editor re-applies f to the new value of
type a and sets it as the actual new value of itself. Notice that, due to the explicit
environment passing style, it is trivial in Clean to connect GECa to itself. In Haskell’s
monadic I/O one needs to tie the knot with fixIO.

2.3 Customizing Graphical Editor Components

The generic definition of gGEC enables the system to derive a GECt for arbitrary values
of type t. Occasionally one needs to deviate from the standard GECt because it does



not suit the requirements of the particular application. In [3] we show that this can be
done by defining special instances for the types that need to be customized. This has
been demonstrated for the ubiquitous counter example. In Fig. 2 the self-correcting code
(updCntr) and model type (Counter) is given. The default GECCounter (shown at the
bottom in Fig. 2) is a mirror image of the generic representation of the Counter model.
It works as intended, and we get it for free. Unfortunately, its view is a counterexample
of a good-looking counter.

updCntr :: Counter → Counter

updCntr (n,Up) = (n+1,Neutral)

updCntr (n,Down) = (n-1,Neutral)

updCntr any = any

:: Counter :== (Int,UpDown)

:: UpDown = Up | Down | Neutral

Fig. 2. Two GECCounters created by selfGEC updCntr (0,Neutral). The standard one
(bottom) and a customized one (top).

The changes that are required to obtain the customized editor are to define new
generic instances for (,) (hide the constructor and place its arguments next to each

other) and UpDown (display instead of ).
Although in a slightly artificial way, this example demonstrates the obstacles B.1

and B.2 that we intend to remove. The increment/decrement behaviour that is cap-
tured with the UpDown type also fixes the derived GUI. The only ways to change the
GUI are to use another type for this behaviour or to customize the editor for that type,
as shown above.

3 Compositional Graphical Editor Components

Using the generic gGEC function, we automatically get an editor for any data type
we invent. This is great for rapid prototyping. However, the appearance of the editor
that we get for free in this way, might not resemble what we have in mind. We have
explained in Sect. 2.3 that an editor can be customized for a specific type by defining
a specialized instantiation of the generic function gGEC for that type. For certain basic
types e.g. representing buttons and the like, this is exactly what we want. We also
want to be able to create new editors from existing ones in a compositional way.
Editors are automatically generated given a concrete type and a value of that type.
The only way we can change this is by defining specialized editors for certain types.
We need to invent a new way to realize abstraction and composition based on this
specialization mechanism. In the following sections we show step by step how this can
be accomplished.

First, we show in Sect. 3.1 how a program can be split such that a clear separation
can be made between editor dependent and editor independent code. This makes it
possible to choose any editor just by making changes to the editor dependent code,
while we never have to make any changes to the editor independent code. Next, in Sect.
3.2 we show how to construct self-contained editors that take care of their own update



and conversion behaviour. Finally, in Sect. 3.3 we turn these self-contained editors into
abstract reusable editors, thus encapsulating all information about their implementation
and behaviour. However, abstract types seem to be at odds with generic programming.
We show in Sect. 3.3 how we have managed to solve this problem.

Although the solution requires high-level functional and generic language con-
structs, it should be emphasized that editors remain very straightforward to use. In this
section we construct a running example to illustrate the technique. The code fragment
(1) below shows the data model. Code fragments appear as framed pieces of code. The
data model is a record of type MyDataModel. The intention is that whenever the user
edits one of the fields value1 or value2, then these new values are summed and dis-
played in field sum. This behaviour is defined by updDataModel. We want to emphasize
that the types and code are ‘carved in stone’: they do not change in the rest of this
paper.

:: MyDataModel (1)
= {value1 :: Int, value2 :: Int , sum :: Int}

initDataModel (v1,v2)

= {value1 = v1, value2 = v2, sum = v1 + v2}

updDataModel :: MyDataModel → MyDataModel

updDataModel rec = { rec & sum = rec.value1 + rec.value2 }

The ‘functional record update’ notation {r & f0 = v0 ,..., fn = vn} creates a
new record value in which all fields have the same value as in r except the updated
fields f0 . . . fn.

3.1 Separation of Concerns by Separating Types

First of all, we want to accomplish a good separation of concerns. Ideally, it should be
possible to concentrate on the functionality of the program without worrying about
the actual shape of the editors. If one is not happy with the standard editor, it should
be possible to construct the appropriate editor later without being forced to modify
code that is not shape-related.

Using the function selfGEC we can immediately get a GECMyDataModel for free for
testing purposes. Below we show what the GECMyDataModel GUI looks like when created
by the function standardEditor. Each time the application user changes a value with
the editor, the function updDataModel is applied and a new sum is calculated and
displayed.

standardEditor

= selfGEC updDataModel

(initDataModel (0,0))

Now suppose that we do not like the look of this standard editor very much, and
want a different one. This is myEditor shown below in code fragment (2). Again, this
code is ‘carved in stone’. We want to reuse the counters of the previous section for
editing the two value fields. As the sum is calculated given these two values, we do not
want the sum value to be editable at all.



myEditor to from (2)
= selfGEC (to o updDataModel o from)

(to (initDataModel (0,0)))

Since editors are created fully automatically just by looking at the type, the only
way to obtain the desired editor is by using suitable data types. For the counters we
use the Counter type. We assume that we have a specialized basic editor for the type
Display a: this editor shows any value of type a, but the value cannot be changed in
the editor. We combine these types in a new type to obtain the desired editor.

As we said before, we do not want to change the code fragments (1) and (2). For this
reason we make a clear distinction between the model of the data (MyDataModel) and
the model of the view used to generate the editor we want (MyViewModel). Conversion
functions between these two models need to be defined (toMyViewModel and fromMy-

ViewModel).
This strict separation of concerns removes obstacle B.1: the data model has nothing

to do with the means of visualization; this is done by the view model.
We can now easily express in the function myEditor how the view and model are

connected. To glue them together we just need two conversion functions to and from

the editor domain. We convert the initial value initDataModel to the view domain and
create an editor. After a change being made with the editor we convert the new values
back to the data model domain, apply the algorithm updDataModel, and convert the
result back to the view domain such that it can be displayed and edited again.

Consequently, we obtain a running editor by applying:

myEditor toMyViewModel fromMyViewModel (3)

The editor we get is completely determined by the type of MyViewModel and the
definition of the conversion functions. If we want another editor, we only have to change
this type and/or these conversion functions, all other code remains the same.

:: MyViewModel = { edvalue1 :: Counter // an updown counter
, edvalue2 :: Counter // an updown counter
, edsum :: Display Int } // non-editable integer value

toMyViewModel :: MyDataModel → MyViewModel

toMyViewModel rec = { edvalue1 = toCounter rec.value1

, edvalue2 = toCounter rec.value2

, edsum = toDisplay rec.sum }

fromMyViewModel :: MyViewModel → MyDataModel

fromMyViewModel edrec = { value1 = fromCounter (edrec.edvalue1)

, value2 = fromCounter (edrec.edvalue2)

, sum = fromDisplay edrec.edsum }

toCounter n = (n,Neutral)

fromCounter (n,_) = n

:: Display a = Display a



toDisplay x = Display x

fromDisplay (Display x) = x

In this way we have created a separate layer on top of the unchanged existing
program. Unfortunately, we did not really reach the desired compositional behaviour.
By choosing another data type one does obtain another editor for free that looks the
way we want, but one does not automatically get the desired self-contained behaviour
with it. For instance, we have used the type Counter in the definition of MyViewModel.
The generated editor displays a counter, but it does not take care of the updates of
the counter. This is clearly not what we want. We have to invent a type from which
self-contained editors can be generated.

3.2 Defining Self-Contained Editors

If we want to reuse an existing editor, it is not enough to reuse its type. We also want to
reuse its functionality: each editor should take care of its own update. For this purpose
we need a type in which we can store the functionality of an editor. If want to create a
view v on a domain model d, we need to be able to replace a standard editor for type d

by a self-contained editor for some isomorphic type v. Furthermore, since we generally
also have to perform conversions between these types, we like to store them as well,
such that each editor can take care of its own conversions. Finally, it is generally useful
to take into account the old value of v when converting from d since editors may have
an internal state.

Therefore we define a new type, ViewGEC d v, in which we can store the update
and conversion functions, and we define a specialized version of our generic editor
gGEC for this type (gGEC{|ViewGEC|}). The definitions are given below. Notice that in
gGEC{|ViewGEC|} two additional parameters appear: gGECd and gGECv. This is caused by
the fact that generic functions in Clean are kind-indexed functions. As ViewGEC d v is
of kind ? → ? → ?, the generic function has two additional parameters, one for type d

and one for type v.
The ViewGEC editor does the following. The value of type d is stored in the ViewGEC

record, but a d-editor (gGECd) for it is not created. Taking the old value of v into ac-
count, the d-value is converted to a v-value using the conversion function d_oldv_to_v

:: d → (Maybe v) → v. For this v-value we do generate a generic v-editor (gGECv)
to store and edit the v-value.

Whenever the application user creates a new v-value with this editor, the call-
back function of the v-editor is called (viewCallback) and the update_v :: v → v

function is applied. This is similar to applying selfGEC update_v to the corresponding
new value of type v. The resulting new v-value is shown in the v-editor again, and it
is converted back to an d-value as well, using the function v_to_d :: v → d. This
new d-value is then stored in the ViewGEC record in the d_val field, and the call-back
function for the ViewGEC editor is called (viewGECCallback). The new d-value can be
inspected in the program as if a new d-value was created with a standard generic
d-editor.

:: ViewGEC d v = { d_val :: d

, d_oldv_to_v :: d → (Maybe v) → v

, update_v :: v → v

, v_to_d :: v → d }



mkViewGEC :: d (d → v) (v → v) (v → d) → ViewGEC d v

mkViewGEC d fdv fvv fvd = { d_val = d

, d_oldv_to_v = fdvv

, update_v = fvv

, v_to_d = fvd }

where
fdvv d Nothing = fdv d

fdvv _ (Just v) = v

gGEC{|ViewGEC|} gGECd gGECv (viewGEC, viewGECCallback) env

= ({ gecSetValue = viewSetValue vInterface

, gecGetValue = viewGetValue vInterface },new_env)

where
(vInterface,new_env) = gGECv (viewGEC.d_oldv_to_v viewGEC.d_val Nothing

,viewCallback vInterface

) env

viewCallback vInterface new_v env

= viewGECCallback {viewGEC & d_val = new_d} new_env

where
new_upd_v = viewGEC.update_v new_v

new_env = vInterface.gecSetValue new_upd_v env

new_d = viewGEC.v_to_d new_upd_v

viewSetValue vInterface new_viewGEC env

= vInterface.gecSetValue new_v new_env

where
newb = new_viewGEC.d_oldv_to_v new_viewGEC.d_val (Just old_v)

(old_v,new_env) = vInterface.gecGetValue env

viewGetValue vInterface env

= ({viewGEC & d_val = viewGEC.v_to_d current_v},new_env)

where
(current_v,new_env) = vInterface.gecGetValue env

The concrete behaviour of the generated ViewGEC editor now not only depends on
the type, but also on the concrete information stored in a value of type ViewGEC. Now
it becomes very easy to define self-contained reusable editors, such as a counter editor,
shown below. The corresponding editor takes care of the conversions and the update.
The displayGEC does a trivial update (identity) and also takes care of the required
conversions.

counterGEC :: Int → ViewGEC Int Counter

counterGEC i = mkViewGEC i toCounter updCntr fromCounter

displayGEC :: a → ViewGEC a (Display a)

displayGEC x = mkViewGEC x toDisplay id fromDisplay



Making use of these new self-contained editors we can repair and even simplify our
previous editor definition. To replace it, we only have to provide a new definition of
MyViewModel and of the conversion functions toMyViewModel and fromMyViewModel.
All other definitions remain the same.

:: MyViewModel = { edvalue1 :: ViewGEC Int Counter

, edvalue2 :: ViewGEC Int Counter

, edsum :: ViewGEC Int (Display Int) }

toMyViewModel :: MyDataModel → MyViewModel

toMyViewModel rec = { edvalue1 = counterGEC rec.value1

, edvalue2 = counterGEC rec.value2

, edsum = displayGEC rec.sum }

fromMyViewModel :: MyViewModel → MyDataModel

fromMyViewModel edrec = { value1 = edrec.edvalue1.d_val

, value2 = edrec.edvalue2.d_val

, sum = edrec.edsum.d_val }

In the definition of toMyViewModel we can now simply choose any suited self-
contained editor. Each editor handles the needed conversions and updates itself au-
tomatically. To obtain the value we are interested in, we just have to address the d_val

field.

The example shows that we have obtained the compositional behaviour that we
wanted to have. One problem remains. If we would replace a self-contained editor by
another in toMyViewModel, all other code remains the same. However, we do have to
change the type of MyViewModel. In this type it is completely visible what kind of
editor has been used. The abstraction would be complete if we also manage to create
an abstract data type for our self-contained editors.

3.3 Abstract Self-Contained Editors

The concrete value of type ViewGEC d v is used by the generic mechanism to generate
the desired self-contained editors. The ViewGEC d v type depends on the type of the
editor v that is being used. Put in other words, the type still reveals information
about the implementation of editor v. This is undesirable for two reasons: one can not
exchange views without changing types, and the type of composite views reflects their
composite structure. For these reasons, we want a type that abstracts from the concrete
editor type v.

However, if we manage to hide these types, how can the generic mechanism generate
the editor for it? The compiler can only generate an editor for a given concrete type,
not for an abstract type of which the content is unknown. The solution is as follows.
When the abstraction is being made, we do know the contents and its type. Hence,
we can store the generic editor function (of type GECFunction, see Sect.2.1) in the
abstract data structure itself where the abstraction is being made. The stored editor
function can be applied later when we really need to construct the editor. Therefore,
we define an abstract data structure (AGEC d) in which we store the ViewGEC d v and
its corresponding generic gGEC function for v. Technically this requires a type system
that supports existentially quantified types as well as rank-2 polymorphism.



:: AGEC d = ∃.v: AGEC (ViewGEC d v)

(∀.ps: GECFunction (ViewGEC d v) (PSt ps))

mkAGEC :: (ViewGEC d v) → AGEC d | gGEC{|?|} v

mkAGEC viewGEC = AGEC viewGEC (gGEC{|? → ? → ?|} undef gGEC{|?|})

gGEC{|AGEC|} = ... // similar to gGEC{|ViewGEC|}, but apply function stored in AGEC

The function mkAGEC creates the desired AGEC given a viewGEC. Looking at the type
of AGEC, the generic system can deduce that the editor to store has to be a generic
editor for type ViewGEC d v. To generate this editor, the generic system by default
requires an editor for type d and type v as well. We know that in this particular case
we do not use the d-editor at all. We can tell this to the generic system by making use
of the fact that generic functions in Clean are kind indexed. The system allows us, if
we wish, to explicitly specify the editors for type d (undef) and type v (gGEC{|?|}) to
be used by the editor for ViewGEC (gGEC{|? → ? → ?|}). In this case we know that
we do not need an editor for type d (hence the undef), and use the standard generic
editor for type v. The overloading context restriction in the type of mkAGEC (| gGEC{|?|}
v) states that for making an AGEC d out of a ViewGEC d v only an editor for type v is
required.

We also have to define a specialized version of gGEC for the AGEC type. The corre-
sponding generated editor applies the stored editor to the stored ViewGEC.

The types and kind indexed generic programming features we have used here may
look complicated, but for the programmer an abstract editor is easy to make. To use
a self-contained editor of type v as editor for type d, a ViewGEC d v has to be defined.
Note that the editor for type v is automatically derived for the programmer by the
generic system! The function mkAGEC stores them both into an AGEC. The functions
counterAGEC and displayAGEC show how easy AGEC’s can be made. One might be
surprised that the overloading context for displayAGEC still requires a d-editor (|
gGEC{|?|} d). This is caused by the fact that in this particular case type d is used in
the definition of type Display.

counterAGEC :: Int → AGEC Int

counterAGEC i = mkAGEC (counterGEC i)

displayAGEC :: d → AGEC d | gGEC{|?|} d

displayAGEC x = mkAGEC (displayGEC x)

We choose to export AGEC d as a Clean abstract data type. This implies that code
that uses such an abstract value can not apply record selection to access the d value.
For this purpose we provide the following obvious projection functions to retrieve the
d-value from an AGEC d (^^) and to store a new d-value in an existing AGEC d (the infix
operator ^=).

(^^) :: (AGEC d) → d // Read current value
(^^) (AGEC viewGEC gGEC) = viewGEC.d_val

(^=) infixl :: (AGEC d) d → (AGEC d) // Set new value
(^=) (AGEC viewGEC gGEC) nval = AGEC {viewGEC & d_val=nval} gGEC



The inclusion of the abstract type AGEC d together with its instance of gGEC, and
the access functions provides the additional strength to the toolkit that is needed to
successfully eliminate obstacle B.2.

We can now refine the three definitions of our running example for the last time
and ‘carve it in stone’ as well in code fragment (4). All other code fragments remain
unchanged. The complete code is formed by the code fragments (1). . . (4) (with a few
auxiliary functions).

:: MyViewModel = { edvalue1 :: AGEC Int (4)
, edvalue2 :: AGEC Int

, edsum :: AGEC Int }

toMyViewModel :: MyDataModel → MyViewModel

toMyViewModel rec = { edvalue1 = counterAGEC rec.value1

, edvalue2 = counterAGEC rec.value2

, edsum = displayAGEC rec.sum }

fromMyViewModel :: MyViewModel → MyDataModel

fromMyViewModel edrec = { value1 = ^^ edrec.edvalue1

, value2 = ^^ edrec.edvalue2

, sum = ^^ edrec.edsum }

The advantage we have obtained now is that, if we want to pick another editor, we
only have to tell which one to pick in the definition of toMyViewModel. The types used
in MyViewModel all remain the same (AGEC Int), no matter which editor is chosen. Also
the definition of fromMyViewModel remains unaffected. It is instructive to compare the
final definition with the one at the end of Sect. 3.2.

3.4 Abstract Editors Are Compositional

In order to show the compositional nature of abstract editors, we first turn the running
example into an abstract editor, say sumAGEC :: AGEC Int. In disguise, it can be used
itself as an Int-editor. Following the scheme introduced above, this is done as follows:

sumAGEC :: Int → AGEC Int // see counterAGEC (3.3)
sumAGEC i = mkAGEC (sumGEC i)

where sumGEC :: Int → ViewGEC Int MyViewModel // see counterGEC (3.2)
sumGEC i = mkViewGEC i to upd from

where to = toMyViewModel o toMyData

from = fromMyData o fromMyViewModel

upd = toMyViewModel o updDataModel o fromMyViewData

toMyData i = initData (0,i)

fromMyData d = d.sum

Now sumAGEC, counterAGEC, and displayAGEC are interchangeable components.
If we want to experiment with variants of the running example, we simply pick the
instance of our choice in the toMyViewModel function. This is displayed in Fig. 3.

We are setting up a library of abstract components. One of these library functions
idAGEC (which takes a value of any type and promotes it to an abstract editor compo-
nent for that type) is used in the example above. With this library it will be possible to



Alternative definition of toMyViewModel: Corresponding GUI:

toMyViewModel1 rec

= { edvalue1 = idAGEC rec.value1

, edvalue2 = idAGEC rec.value2

, edsum = displayAGEC rec.sum }

toMyViewModel2 rec

= { edvalue1 = idAGEC rec.value1

, edvalue2 = counterAGEC rec.value2

, edsum = displayAGEC rec.sum }

toMyViewModel3 rec

= { edvalue1 = counterAGEC rec.value1

, edvalue2 = sumAGEC rec.value2

, edsum = displayAGEC rec.sum }

Fig. 3. Plug-and-play your favourite abstract editors to experiment with the running
example. The only code that changes is the function toMyViewModel.

rapidly create GUIs in a declarative style. This can be very useful e.g. for prototyping,
education, tracing and debugging purposes.

4 Related Work

Our model-view approach has several interesting features that are not present in the
standard approach [12]. Firstly, because views are derived automatically, a programmer
in our system does not need to explicitly ‘register’ nor program views. Instead, the view
is specified by the programmer by means of the types that are used in the model. This
specification, which is defined in terms of data types only, is used by the generic system
to derive the actual GUI. Secondly, views can be customized via overruling instance
declarations of arbitrary types. Finally, the most distinguishing feature of our model-
view approach is the nature of both the model and the views. The generic framework
dissects the offered type of the model into the set of generic types, each of which is
mapped to an interactive model-view unit. Put in other words, our approach can truly
be called model-view all the way.

Frameworks for the model-view paradigm in a functional language use a similar
value-based approach (Claessen et al [8]), or an event-based version [11]. In both cases,
the programmer needs to explicitly handle view registration and manipulation. In our
framework, the information-flow follows the structure that is derived by the generic
decomposition of the model value. This suggests that we could have based our abstract
GUI definitions on a stream-based solution such as Fudgets [7]. However, stream
based approaches are known to impose a much too rigid coupling between the stream
based communication and the GUI structure resulting in a severe loss of flexibility



and maintainability. For this reason, we have chosen to use a system with a call-back
mechanism as the interface of its GUI components.

Martijn Schrage [13] also employs generic programming techniques to produce views
in the Proxima PhD-project. It is specifically geared towards the design and develop-
ment of a generic presentation-oriented XML-editor. Wolfram Kahl has developed a
first version of editor combinators [17]. With editor combinators text-based structure
editors can be defined and composed in a way which is similar to parser combinators.

We know of no other declarative work for describing general purpose GUIs that
achieves a similar abstraction level with such a complete separation of model and view.

5 Conclusions and Future Work

We have introduced a technique for programming GUIs with the following properties:

– The programmer can separate application logic from view logic by defining a sep-
arate data model and view model.

– Using abstract GECs (in which a complete model-view is encapsulated) the pro-
grammer can incrementally change the view model without modifying its type.

– The programmer can use a library of abstract GECs to construct GUIs by compo-
sition without knowing anything about standard GUI libraries.

– The ease of programming with abstract GECs makes it very suited for use in
education, tracing, debugging and rapid prototyping.

The Clean language that we have used in this project is a functional language
with strong support for types, including existential types and rank-2 polymorphism.
We rely essentially on generic programming with kind indexed types. The GUI part is
implemented op top of the Object I/O library of Clean. The system could also have
been realized in Generic Haskell using the Haskell Object I/O library.

Currently, function types are excluded from the system. We plan to include arbi-
trary function values by reusing the Esther system [15] which relies on Clean’s support
for dynamics [16]. Furthermore, we will investigate the expressive power of our graph-
ical editor components by setting up a library for abstract GECs and by performing
case studies, experimenting with multiple views and multiple models.
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