
Arrows for Generic Graphical Editor Components

Peter Achten, Marko van Eekelen, Rinus Plasmeijer, Arjen van Weelden
peter88, marko, rinus, arjenw@cs.kun.nl

Department of Software Technology, University of Nijmegen
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

ABSTRACT
GUI programming is hard, even for prototyping purposes.
In this paper we present the Graphical Editor Component
toolkit in which GUIs can be created in an abstract and
compositional way. The basic building blocks are (Abstract)
Graphical Editor Components ((A)GEC) with which the
programmer can create GUIs by specification of the data
models only. No low-level GUI programming is required.
We show how these building blocks can be glued together
conveniently using a combinator library based on the arrow
combinators that have been introduced by John Hughes.
The proofs of the associated arrow laws can be done with
standard reasoning techniques without resorting to a dedi-
cated semantic model.

1. INTRODUCTION
In the last decade, Graphical User Interfaces (GUIs) have

become the de facto standard. Programming these inter-
faces can be done without much effort when the interface is
rather static. For many of these situations excellent tools are
available. However, when there is more interaction between
interface and application logic, programming such applica-
tions is hard, in any programming language. Programmers
need to be skilled in the use of a large programming toolkit.

One direction to reduce the complexity of GUI program-
ming is to use a User Interface Management System (UIMS).
With these systems, software designers construct UI com-
ponents visually. These UI components can be stored and
loaded in the running application. The main advantage of
UIMSs is that UI designers can create quality user interface
components with a minimum of programming knowledge.
The main disadvantages are that the application code needs
to synchronize its logic with these resources, and that these
solutions do not work well when the UI depends on the run-
time state of the application.

The other direction that can be taken to overcome this
problem, is to create a programming toolkit that offers a
sufficient level of abstraction and compositionality. Abstrac-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

tion is required to reduce the size of the toolkit, whereas
compositionality reduces the effort of putting together, or al-
tering, GUI code. This is what the Graphical Editor project
is about. Programming toolkits do offer the required ex-
pressive power when GUIs depend on the run-time state
of the application. Creating GUI components in code has
the additional advantage that this code can be type-checked
statically, just as conventional non-interactive code. We con-
jecture that having an abstract and compositional program-
ming toolkit also eases the development of a UIMS, because
this enables their implementation to map visually created
GUI components to more abstract and compositional desti-
nation code.

In the Graphical Editor project, we have developed a uni-
versal building block for constructing GUIs on a high level of
abstraction and in a compositional way. This building block
is the Graphical Editor Component (GEC) [4]. A GECt is
an interactive editor for values of type t. It is universal
because it works for all concrete types, including function
types. This has been achieved using generic programming
techniques [6, 12, 11]. Both the user and the program in
which it is embedded can change the current value of a
GECt, provided that it is of type t. If the user modifies
the value, the program is notified of this event via a call-
back function. Furthermore, the program is able to retrieve
the current value from a GECt.

GECs satisfy our requirement of abstraction and compo-
sitionality. They abstract from all conventional GUI pro-
gramming knowledge because they only define which values
are edited and not how they are edited. Compositionality is
obtained because GECs are constructed automatically via
the generic decomposition of the type structure whose val-
ues are edited. Creating an editor of a composite type is
therefore as easy as composing the type itself.

As argued above, compositional systems facilitate modifi-
cations of existing code. Within our framework, this can be
done by abstract GECs, or AGECs [5]. An AGECt works
externally as a GECt, but is implemented internally as a
GECu for some type u. This means that code that is defined
on the external interface, does not need to alter when the
programmer experiments with different internal implemen-
tations.

From the discussion above it should be clear that the com-
position of GECs is within the GECs. In order to obtain an
editor for values of type (a,b) one creates a GEC(a,b) editor.
The goal in this paper can be stated as: suppose we have
a GECa and a GECb, how can we compose them? With
GECs, this can be done by using the callback functions of

1

GECa and GECb. In general combining GECs in this way
is cumbersome, can easily lead to errors, and can be very
hard to reason about because there are no restrictions on
the actual functions. Instead, we want to take the standard
approach in functional programming to develop a small li-
brary of combinator functions. It turns out that we can base
this combinator library on Hughes’ arrows [14].

Finally, a note on the implementation. The project has
been realized in Clean [16]. The GUI code is mapped to
Object I/O [3]. The generic support of Clean is used to
construct a GECt for any Clean type t, including function
types. The implementation for function types reuses the Es-
ther system [17] which relies on Clean’s support for dynam-
ics [18]. GECs have been designed not to be a replacement
for Object I/O programs, but rather an additional layer on
top. Given sufficient support for generic programming, this
project could also have been carried out in Generic Haskell
[9], using the Haskell [15] port of Object I/O [2].

Contributions of this paper are:

• we turn GECs into basic arrow elements,

• we show that these elements are indeed arrows,

• we show that they satisfy the required laws,

• we show that the proofs of the arrow laws can be done
using standard reasoning techniques for functional pro-
grams without the need to resort to a dedicated seman-
tic model.

This paper is structured as follows. We first give an
overview of GECs in Sect. 2. Sect. 3 introduces GEC ar-
rows. We discuss the implementation of the required arrow
combinators, and show how to prove the basic arrow laws.
Related work is presented in Sect. 4. Finally, we conclude
in Sect. 5.

2. GRAPHICAL EDITOR COMPONENTS
In [4] we introduced the concept of a Graphical Editor

Component, a GECt. A GECt is an editor for values of
type t. It is provided with an initial value of type t and it is
guaranteed that an application user can only use the editor
to create values of type t. A GECt always contains a value
of type t.

A GECt is generated with a generic function [11, 6]. A
generic function is a meta description on the structure of
types. For any concrete type t, the compiler is able to auto-
matically derive an instance function of this meta descrip-
tion for the given type. The power of a generic scheme is
that we obtain an editor for free for any data type. This
makes the approach particularly suited for rapid prototyp-
ing.

Before explaining GECs in more detail, we need to point
out that Clean uses an explicit multiple environment passing
style [1] for I/O programming. Because GECs are integrated
with Clean Object I/O, the I/O functions that are presented
in this paper are state transition functions on the program
state (PSt ps). The program state represents the external
world of an interactive program, tailored for GUI operations.
In this paper the identifier env is a value of this type. In the
Haskell variant of Object I/O [2], a state monad is used
instead. The uniqueness type system [7] of Clean ensures
single threaded use of the environment. Uniqueness type

attributes that actually appear in the type signatures are not
shown in this paper, in order to simplify the presentation.

2.1 Creating GECs
GECs are created with the generic function gGEC. This

function takes a definition (GECDef t env) of a GECt and
creates the GECt object in the environment. It returns an
interface (GECInterface t env) to that GECt object. It is a
(PSt ps) transition function because gGEC modifies the envi-
ronment.

generic gGEC t :: GECFunction t (PSt ps)

:: GECFunction t env :==1 (GECDef t env) → env
→ (GECInterface t env , env)

A GECt is defined by a GECDef t env which consists of
three elements. The first is a string that identifies the top-
level Object I/O element (window or dialog) in which the
editor must be created. The second is a value of type t

which will be the initial value of the editor. The third is
a callback function of type t → env → env. This callback
function is provided by the context of the editor, and tells it
which parts of the program need to be informed of user-edit
actions. The editor uses this function when the user has
changed the current value of the editor.

:: GECDef t env :== (String , t , CallBackFunction t env)
:: CallBackFunction t env :== t→ env→ env

The GECInterface t env is a record that contains all meth-
ods that the ‘context’ can use to employ the newly created
GECt.

:: GECInterface t env
= { gecGetValue :: GecGet t env

, gecSetValue :: GecSet t env }2
:: GecGet t env :== env→ (t ,env)
:: GecSet t env :== IncludeUpdate→ t→ env→ env

Let gecf :: GECInterface t env be such an interface to a
GECt with callback function f. Using the explicit envi-
ronment passing style of Clean, a program can obtain the
current value by:

] (v , env) = gec.gecGetValue3 env

and change it to v ‘ with:

] env = gec.gecSetValue ... v ‘ env

The]-notation of Clean has a special scope rule such that
the same variable name can be used for subsequent non-
recursive]-definitions. It is particularly suited for the ex-
plicit environment passing style of Clean. In this paper we
use this notation in order to emphasize the ‘natural’ thread-
ing of environments. At some points we need to deviate
from this style, because there are recursive dependencies be-
tween local definitions. In those cases, we will annotate the
environments env with numbers, in order to indicate their
relative threading (so we use env1, env2, . . .).

The first argument of the gecSetValue method is of type
IncludeUpdate, which is a simple algebraic data type:

:: IncludeUpdate = NoUpdate | YesUpdate

1:== introduces a synonym type.
2Record types have exactly one alternative.
3r.f denotes the record field selection of f from r.

2

This argument controls the flow of information. If the ar-
gument of gecSetValue is NoUpdate, then its effect is sim-
ply to set the new value of gec to v ‘ . If the argument of
gecSetValue is YesUpdate, then its effect is that immedi-
ately after the new value of gec is set to v ‘ , its callback
function f is evaluated with argument v ‘ (as if the user had
edited the current value to v ‘). Put in other words, it has
the same effect as:

] env = gec.gecSetValue NoUpdate v ‘ env
] env = f v ‘ env

Additionally, GECInterface contains several other useful
methods for a program that are not shown above. These
are methods to open and close the created GECt and to
show or hide its visual appearance.

The appearance of a standard GECt is illustrated by the
following complete program that creates an editor for the
well-known Tree type:

module TreeEditor

import StdEnv , StdIO , StdGEC

Start :: *World→ *World // Entry of Clean program
Start world

= startIO // Entry of Object I/O program
SDI // Request single window
Void // Empty application state
myEditor // Create GEC
world

myEditor = snd o4 gGEC ("Tree" ,Node Leaf 1 Leaf ,const id)

:: Tree a = Node (Tree a) a (Tree a) | Leaf

Note that the only things that need to be specified by the
programmer are the initial value of the desired type, and
the callback function. In the remainder of this paper, we
will only modify the myEditor definition in order to produce
a wide range of examples.

In this particular example, we create a GECTree Int which
displays the indicated initial value (see Fig. 1). The applica-
tion user can manipulate this value in any desired order thus
producing new values of type Tree Int. Each time a new
value is created, the callback function is applied automati-
cally. The callback function of this first example (const id)
has no effect. The shape and lay-out of the tree being dis-
played adjusts itself automatically. Default values are gen-
erated by the editor when needed.

Figure 1: The initial GEC for a tree of integers (top)
and an edited one (bottom: the upper Leaf turned
into a Node with the pull-down menu).

2.2 Semantics of GECs
4o is the standard function composition operator.

The example program above illustrates that GECs can be
created in an Object I/O program. If we want to explain the
meaning of GECs, we first have to explain the meaning of
Object I/O programs. We do this by presenting an abstract
version of the actual Clean code in which Object I/O has
been written. We want to show the essence of Object I/O,
rather than a stripped down version of Object I/O in Clean.
The reason is that even a stripped down version must be
type correct and complete. This is not our goal. Therefore,
we do not use pure Clean syntax, but deviate where useful.

Every interactive program is a function that manipulates
the external world. For our purposes, it is sufficient that
this world, represented by the data type World, contains
an infinite event stream, and an infinite identification value
stream:

World =D 〈[Event], [Id], . . .〉
The exact nature of events or identification values is not

important, we only require them to be comparable. Of
course, the identification value stream contains no duplicate
elements.

An Object I/O process is a state-transition system. It ma-
nipulates a process state (PSt ps) that consists of a program
state (ps) and an I/O state (IOSt ps). The first is defined by
the program, the second contains all information required to
handle GUIs (GUI ps) and the external world (World).

PSt ps =D 〈ps, IOSt ps〉
IOSt ps =D 〈GUI ps, World〉

Again, the exact representation of GUI ps is irrelevant.
It is parameterized with the program state only because it
contains all callback functions of all GUI components. We
assume that we can store these functions with standard set
operations, and retrieve them via their associated events,
using the function getCallBackFun :: Event → (GUI ps) →
(PSt ps) → (PSt ps).

The Object I/O function startIO turns the World into an
initialized PSt ps, for any program state and initialization
function. Then, as usual with event driven applications, it
enters the event-loop until termination (a ‘quit’ event).

startIO :: ps → ((PSt ps) → (PSt ps)) → World → World
startIO ps initIO w

= eventloop (initIO 〈ps,initializeIOSt w 〉)
where eventloop :: (PSt ps) → (PSt ps)

eventloop 〈ps, 〈∅,w〉〉= 〈ps, 〈∅,w〉〉
eventloop 〈ps, 〈gui, 〈[e:es],ids〉〉〉

= eventloop (f 〈ps, 〈gui,〈es,ids〉〉〉)
where f = getCallBackFun e gui

In Sect. 2.1, we have introduced the GECt creation func-
tion, gGEC, that is parameterized with a string s, an initial
value v :: t and callback function f :: CallBackFunction t

(PSt ps). In essence, gGEC (s,v,f) is an action that cre-
ates the GECt and returns its interface i :: GECInterface

t (PSt ps). The creation of the GECt is represented by
storing it in the GUI ps after tagging it with a fresh identi-
fication value.

gGEC (s,v,f) 〈ps, 〈gui, 〈es,[id:ids]〉〉〉
= (i, 〈ps, 〈gui ∪{〈id,v,f〉}, 〈es,ids〉〉〉)

3

where
i = 〈get’ id,set’ id〉

Interface i is actually a record of the two functions, gecGetValue
and gecSetValue. These are modeled via the functions get’
id and set’ id respectively, which are parameterized with
the proper identification value for retrieval purposes. The
method get’ id returns the currently stored value of the edi-
tor indicated by id, and set’ id replaces the currently stored
value. If it is also applied to YesUpdate, it evaluates the
associated callback function of the editor.

get’ id 〈ps, 〈gui,w〉〉
= v if 〈id,v,f〉∈ gui
= ⊥ otherwise

set’ id iu v’ 〈ps, 〈gui,w〉〉
= 〈ps, 〈gui’,w〉〉 if 〈id,v,f〉∈ gui ∧ iu = NoUpdate
= f 〈ps, 〈gui’,w〉〉 if 〈id,v,f〉∈ gui
= ⊥ otherwise

where
gui’ = gui \{〈id,v,f〉} ∪ {〈id,v’,f〉}

We assume that getCallBackFun is able to track down the
callback function f whenever the user edits the correspond-
ing GEC.

2.3 Manual composition of GECs
In this section we present a number of examples to show

how GECs can be combined relying on the callback mech-
anism and method invocation. In Sect. 3.6 we show how
these examples can be expressed using arrow combinators.

The first example establishes a functional dependency of
type a → b between a source editor GECa and destination
editor GECb:

applyGECs :: (String ,String) (a→ b) a (PSt ps) → PSt ps5

|6 gGEC{|?|}7 a , b
applyGECs (sa ,sb) f va env

] (gec_b , env) = gGEC (sb , f va , const id) env
] (gec_a , env) = gGEC (sa , va , set gec_b f) env
= env

set :: (GEC b (PSt ps)) (a→ b) a (PSt ps) → (PSt ps)
set gec f va env = gec.gecSetValue NoUpdate (f va) env

The callback function of geca uses the gecSetValue inter-
face method of gecb to update the current b value whenever
the user modifies the a value. As a simple example, one can
construct an interactive editor for lists that are mapped to
balanced trees by the following single change of definition of
the example program shown in Sect. 2.1 (see Fig. 2):

myEditor = applyGECs ("List" ,"Balanced Tree")
balancedTree [1 ,5 ,2]

with balancedTree :: [Int] → Tree Int.
Of course, the same can be done for binary functions with

slightly more effort:

apply2GECs :: (String ,String ,String) (a→ b→ c)
a b (PSt ps) → (PSt ps) | gGEC{|?|} a , b , c

apply2GECs (sa ,sb ,sc) f va vb env = env3
where

(gc ,env1) = gGEC (sc ,f va vb ,const id) env

5Types of function definition separate arguments with
whitespace instead of →.
6Class restrictions appear at the end of a type.
7Use the generic instance of kind ? of gGEC.

Figure 2: Turning lists into balanced binary trees.

(gb ,env2) = gGEC (sb ,vb ,combine ga gc (flip f)) env1
(ga ,env3) = gGEC (sa ,va ,combine gb gc f) env2

combine :: (GEC y (PSt ps)) (GEC z (PSt ps))
(x→ y→ z) x (PSt ps) → PSt ps

combine gy gz f x env
] (y ,env) = gy.gecGetValue env
] env = gz.gecSetValue NoUpdate (f x y) env
= env

Notice that, due to the explicit environment passing style,
it is trivial in Clean to connect GECb with GECa and vice
versa. In Haskell’s monadic I/O one needs to tie the knot
with fixIO.

As an example, one can construct two interactive list ed-
itors, that are merged and put into a balanced tree:

myEditor = apply2GECs ("List1" ,"List2" ,"Balanced Tree")
makeBalancedTree [] []

where
makeBalancedTree l1 l2 = balancedTree (l1 ++ l2)

with ++ :: [a] [a] → [a] the Clean list concatenation op-
erator. Fig. 3 shows the result.

Figure 3: Merging two lists into a balanced binary
tree.

The final example is that of self-correcting editors. These
are editors that update themselves in response to user edit
operations. The function definition is concise:

selfGEC :: String (a→ a) a (PSt ps) → (PSt ps)
| gGEC{|?|} a

selfGEC sa f va env = env1
where

(thisGEC ,env1) = gGEC (sa ,f va ,set thisGEC f) env

4

As an example, one can now construct a self-balancing
tree with (see Fig. 4):

myEditor = selfGEC "Self Balancing Tree"
(balancedTree o toList) Leaf

with toList :: (Tree a) → [a]. This means that it is im-
possible for a user of this editor to create a stable non-
balanced tree value.

Figure 4: Self balancing binary tree.

2.4 Customizing GECs
The generic function gGEC creates a default editor for ar-

bitrary values of given type. This makes it universally ap-
plicable to all data domains. In order to make it a flexible
tool, one needs to be able to deviate from the default when
required by the application under construction. In this sec-
tion we show that this can be done for all values of a given
type (Sect. 2.4.1) and even for specific values (Sect. 2.4.2),
using AGECs.

2.4.1 Customizing Types
Clean allows generic functions to be overruled by custom

definitions for arbitrary types. gGEC is no exception to this
rule. The left screenshot in Fig. 5 shows the default interface
of the definition below for the ubiquitous counter example,
when created by:

myExample = selfGEC "Counter" updCntr (0 ,Neutral)

updCntr :: Counter→ Counter
updCntr (n ,Up) = (n+1 ,Neutral)
updCntr (n ,Down) = (n-1 ,Neutral)
updCntr any = any

:: Counter :== (Int ,UpDown)
:: UpDown = Up | Down | Neutral

Figure 5: The default editor (left) and the cus-
tomized editor (right) of the counter example.

Although the definition of the counter is a sensible one,
its visual interface clearly is not. In [4] we show how to
change the representation of all values of type Counter to
the screenshot shown at the right in Fig. 5. Because it has
been explained in detail in [4], we will not repeat the code,
but point out the important points:

• In this particular example, only the definitions of (,)

(hide the constructor and place its arguments next to

each other) and UpDown (display instead of)
need to be changed.

• Normally gGEC creates the required logical (value pass-
ing) and visual infrastructure (GUI components). The
programmer, when customizing gGEC, only needs to de-
fine the visual infrastructure. The programmer must
be knowledgeable about Object I/O programming.

• The overruled instance works not only at the top-level.
Every nested occurrence of the Counter type is now
represented as shown right in Fig. 5.

2.4.2 Customizing Values
Above we have shown how the programmer can change

the editor interface for any type, at all occurrences. This
is in some cases much to rigid. One can not use different
visual appearances of the same type within a program. An
approximation is to give a different type to each different
occurrence, at the expense of flexibility: changing the visual
appearance via a change of type requires modification of
the code. What is needed is the same level of abstraction
for editors as multiple implementation abstract data types do
for ‘conventional’ data types. This has resulted in abstract
GECs (AGECt) [5].

In the following example we use three AGECInt editors in
combination with an AGECInt Int→Int editor to construct
a GUI in which the user can enter integer values (using
counterAGEC which have the counters described above as in-
ternal implementation) and function definitions of type Int

Int → Int (using dynamicAGEC which offers a strongly typed,
textual editor for arbitrary types [17]). At each edit op-
eration, the current function is applied to the current ar-
guments. Because AGEC editors are abstract types them-
selves, their current value is obtained via the prefix operator
^^. Note that the programmer can freely experiment with
abstract editors in the definition of toGEC without changing
any other piece of code. The result of this particular editor
is shown in Fig. 6.

myEditor = selfGEC "test operator"
(toGEC o updFun o fromGEC) (toGEC funTest)

updFun x

= { x &8 result = x.f x.arg1 x.arg2} // apply f to args
toGEC x

= { arg1 = counterAGEC x.arg1 // counter editor
, arg2 = counterAGEC x.arg2 // counter editor
, f = dynamicAGEC x.f // function editor
, result = displayAGEC x.result } // display element

fromGEC x
= { arg1 = ^^ x.arg1 // Int argument

, arg2 = ^^ x.arg2 // Int argument
, f = ^^ x.f // (Int → Int → Int) value
, result = ^^ x.result } // Int result

funTest = { arg1 = 0, arg2 = 0, f = (+) , result = 0 }

:: FunTest a b c d
= { arg1 :: a , arg2 :: b , f :: c , result :: d }

Again, we summarize the main results:

• We can define arbitrarily many editors geci :: AGECt

that have a private implementation of type GECui .

8{r & f = v} denotes a new record value, that is equal to r,
but with value v for field f.

5

Figure 6: The function test GUI.

• For every GECt, there is an AGECt that has the for-
mer as its implementation. This is the identity AGECt.

• Code that has been written for editors that manipu-
lates some (type containing) AGECt, does not change
when the value of type AGECt is changed for another
AGECt. This facilitates experimenting with various
designs for an interface without changing its code.

• In contrast with customizing types, when customizing
values the programmer does not have to be knowledge-
able about Object I/O programming. The only things
that need to be defined when creating an AGECt that
has a GECu implementation are an initial value of
type t, conversion functions (t → (Maybe u) → u and
u → t), and a self-correcting function for the imple-
mentation (u → u). These are all expressed at the data
domain level.

3. COMBINING GECS USING ARROWS
The examples in Sect. 2.3 show that GECs can be com-

posed by writing appropriate callback functions that use the
GECInterface methods gecGetValue (get the value of a GEC)
and gecSetValue (set its value). This explicit plumbing can
become cumbersome when larger and more complex situa-
tions must be specified. What is needed, is a disciplined, and
more abstract way of combining components. Monads [19]
and arrows [14] are the main candidates for such a discipline.
Monads abstract from computations that produce a value,
whereas arrows abstract from computations that, given cer-
tain input, produce values. Because GECs also have input
and produce values, arrows are the best match. In this sec-
tion we show how arrows can be used successfully for the
composition of GECs, resulting in structures that resemble
circuits of GECs (GecCircuit a b).

In Sect. 3.1 we show that GecCircuit is an instance of the
Arrow class by providing implementations of the basic arrow
combinators. Given these circuit-like structures, we show
how to embed them properly in Object I/O (Sect. 3.2),
and, conversely, how arbitrary Object I/O functions can be
embedded in circuits themselves (Sect. 3.3). In Sect. 3.4
special combinators are presented that abstract from recur-
sion and looping. In order to be a full member of the Arrow

class, the corresponding arrow laws [14] have to hold. We
show in Sect. 3.5 that these laws can be proven in a surpris-
ingly straightforward manner. Finally, Sect. 3.6 concludes
with redefinitions of the examples in Sect. 2.3 using the
GEC arrows. In order to illustrate the expressive power, a
more complex example is also presented, namely that of an
editor-editor.

3.1 Definition of GEC-Arrows
The arrow class definition for which we need to provide

implementation for our GEC arrows of type GecCircuit is

given below. This class describes the basic combinators >>>

(serial composition), arr (function lifting), and first (saving
values across computations). The other definitions below
can all be derived in the standard way from these basic arrow
combinators. They are repeated here because we use them
in our examples (Sect. 3.6).

class Arrow arr where
arr :: (a→ b) → arr a b
(>>>) :: (arr a b) → (arr b c) → arr a c
first :: (arr a b) → arr (a ,c) (b ,c)

/∗ Combinators for free: ∗/
second :: (arr a b) → arr (c , a) (c , b)
second gec = arr swap>>> first gec>>> arr swap
where

swap t = (snd t ,fst t)

returnA :: arr a a
returnA = arr id

(<<<) infixr 1 :: (arr b c) (arr a b) → arr a c
(<<<) l r = r>>> l

(∗∗∗) infixr 3 :: (arr a b) (arr c d) → arr (a ,c) (b ,d)
(∗∗∗) l r = first l>>> second r

(&&&) infixr 3 :: (arr a b) (arr a c) → arr a (b ,c)
(&&&) l r = arr (λx→ (x ,x)) >>> (l ∗∗∗ r)

3.1.1 The GEC-Arrow type
It is the task of our arrow model to introduce a standard-

ized way of combining GECs. As explained in Sect. 2.1, one
uses a GECt through its interface of type GECInterface t env.
Method gecSetValue :: GecSet t env sets a new value of type
t in the associated GECt, and gecGetValue :: GecGet t env

reads its current value of type t.
If we generalize these types, then we can regard a GEC-

to-be-combined as a component that has input a and output
b (where a = b = t in case of a ‘pure’ GECt). This gener-
alization of a GEC-to-be-combined has type GecCircuit a b

because of its resemblance with electronic circuits. Conse-
quently, this GecCircuit a b has a slightly more general in-
terface, namely a method to set values of type GecSet a env,
and a method to get values of type GecGet b env. This gen-
eralized flow of control of a circuit is visualized in Fig. 7.

Figure 7: A GEC Circuit (external view).

When circuits are combined this will yield a double con-
nection (one forward set and one backward get for each cir-
cuit). It is essential to realize that usage of the set method
is restricted to the circuit that produces that input, and,
likewise, usage of the get method is restricted to the circuit
that needs that output.

Moreover, a GEC-to-be-combined of type GecCircuit a b

needs to know where to send its output to, and where to
obtain its input from. More precisely, it is only completely
defined if it is provided with a corresponding set method (of
type GecSet b env) and a get method (of type GecGet a env).
These methods correspond exactly with the ‘missing’ meth-

6

ods in Fig. 7. Put in other words, a GecCircuit a b behaves
as a function. Indeed, the way we obtain the restricted com-
munication is by passing continuation functions. Through
these continuations values are passed and set throughout
the circuit. Each GecCircuit a b is a function that takes
two continuations as arguments (one for the input and one
for the output) and produces two continuations. The way
a circuit takes its continuation arguments, creates a circuit
and produces new continuations, can be visualized with the
internal view of a circuit (see Fig. 8).

Figure 8: A GEC Circuit (internal view).

A GecCircuit is not only a continuation pair transforma-
tion function but it also transforms an Object I/O environ-
ment since it also has to be able to incorporate the environ-
ment functions for the creation of graphical editor compo-
nents. These environment functions are of type (PSt ps)

→ (PSt ps).
The global idea sketched above motivates the following

full definition of the GecCircuit a b type:

:: GecCircuit a b
= GecCircuit (∀ ps:

(GecSet b (PSt ps) ,GecGet a (PSt ps) ,PSt ps)
→ (GecSet a (PSt ps) ,GecGet b (PSt ps) ,PSt ps))

The circuits do not depend on the program state ps. This
is expressed elegantly using a rank-2 polymorphic function
type.

3.1.2 Lifting a GEC to a GEC arrow
Before implementing the arrow combinators we first ex-

plain how we lift a GEC to a circuit. This is done by the
function edit. Its overloaded type conveniently expresses
that for every GECa, created by the ? indexed instance of
gGEC, there also exists a GecCircuit a a. The outside view
of an edit circuit is illustrated in Fig. 9.

Figure 9: A GEC edit circuit (external view).

edit :: String→ GecCircuit a a | gGEC{|?|} a
edit s = GecCircuit k
where

k (seta ,geta ,env)
] (a ,env) = geta env
] ({gecGetValue ,gecSetValue} ,env)

= gGEC (s ,a ,seta) env
= (gecSetValue ,gecGetValue ,env)

A GECa is created which, when it is initialized, fetches its
initial value using the result of the get-function of its input
argument. Furthermore, its callback function is defined such
that editing this GECa will result in calling the set-function
of the circuit’s output connection with the new edited value.

Finally, the GEC-interface which is the result of creating the
GECa consists of a get and a set function. These functions
are exactly its GecInterface a env methods, obtained from
gGEC. The internal view of the edit circuit is shown in Fig.
10.

Figure 10: A GEC edit circuit (internal view).

3.1.3 Basic GEC-Arrow combinators
In this section we implement the three basic Arrow class

combinators >>>, arr, and first.

The arrow combinator>>>. The external view of compo-
sition of circuits is given in Fig. 11.

Figure 11: Composition of two GEC circuits, exter-
nal view.

The basic serial composition of arrows applies the circuit
functions of its arguments to the appropriate continuations,
yielding a new component. It is defined as:

(>>>):: (GecCircuit a b) (GecCircuit b c)→GecCircuit a c
(>>>) (GecCircuit l) (GecCircuit r) = GecCircuit k
where

k (setc ,geta ,env) = (seta ,getc ,env2)
where

(seta ,getb ,env1) = l (setb ,geta ,env)
(setb ,getc ,env2) = r (setc ,getb ,env1)

The definition of >>> comes naturally when you consider
the types of each circuit. The circuit l is of type GecCircuit

a b. Hence, l is applied to a setb and a geta function and
produces a seta and a getb function.

It may be surprising that filling in the natural applica-
tions of l and r yields mutually recursive definitions. Due
to laziness the actual dependencies can be resolved, because
they are not circular dependent upon execution. There is
one exception which may cause an unwanted runaway com-
putation as is the case in looping circuits [13]. In Sect. 3.4
we treat solutions to this problem.

In Fig. 12, it is illustrated how the connections are made
when two components are composed.

The arrow combinatorarr. Lifting a function to a GEC
circuit can be done without creating an editor. The external
view of a lifted function circuit is given in Fig. 13.

arr :: (a→ b) → GecCircuit a b
arr f = GecCircuit k
where

k (setb ,geta ,env) = (seta ,getb ,env)

7

Figure 12: Composition of two GEC circuits, inter-
nal view.

Figure 13: The arr combinator, external view.

where
getb env

] (a ,env) = geta env
= (f a ,env)

seta u a env = setb u (f a) env

The function f is simply applied inside the seta function
as well as inside the getb function. Both the set and the get

functions are chained together through application.
In Fig. 14, it is illustrated how the connections are made

in order to create the arr combinator.

Figure 14: The arr combinator, internal view.

The arrow combinatorfirst. The external view of the
first combinator is given in Fig. 15.

The first combinator is defined as:

first :: (GecCircuit a b) → GecCircuit (a ,c) (b ,c)
first (GecCircuit g) = GecCircuit k
where

k (setbc ,getac ,env) = (setac ,getbc ,env1)
where

(seta ,getb ,env1) = g (setb ,geta ,env)

setac u (a ,c) env
] env = seta u a env
] (b ,env) = getb env
= setbc u (b ,c) env

getbc env
] (b ,env) = getb env
] ((_ ,c) ,env) = getac env
= ((b ,c) ,env)

setb u b env
] ((_ ,c) ,env) = getac env
= setbc u (b ,c) env

geta env
] ((a ,c) ,env) = getac env

Figure 15: The first combinator, external view.

= (a ,env)

As was the case for composition and lifting, the first com-
binator is defined straightforwardly considering the types of
the circuits. Producing a setac and a getbc function requires
a seta and a getb function. A seta and a getb function can
be produced by applying the circuit function g on a setb

and geta function which in turn can be produced with k’s
argument functions setbc and getac.

In Fig. 16 it is illustrated how the connections are made
in order to create the first combinator.

Figure 16: The first combinator, internal view.

This completes the basic set of definitions required.

3.2 GEC Arrows in Object I/O
Now that we have shown how to lift every GECt to Gec-

Circuit t t, and know how to glue circuits with arrows, we
need to show how such a circuit comes to life in Object I/O.
This is done with the function startCircuit which basically
turns a circuit into an Object I/O state transition function.
As such it can be used in the myEditor function of Sect. 2.3.

startCircuit :: (GecCircuit a b) a (PSt ps) → PSt ps
startCircuit (GecCircuit k) a env

] (_ ,_ ,env) = k (setb ,geta ,env)
= env

where
geta env = (a ,env)
setb _ _ env = env

Upon creation, the circuit function is applied to a geta

function producing the initial argument and a dummy set

function that just passes the environment.

3.3 Object I/O in GEC Arrows
The startCircuit function can be used just as any other

Object I/O environment function. It is also possible to pro-
mote an Object I/O environment function to a GEC circuit.
This is done with the function gecIO which enables the pro-
grammer embed all functionality offered by the large Object
I/O library. It has the following definition:

gecIO :: (∀ ps: a→ (PSt ps) → (b ,PSt ps))
→ GecCircuit a b

gecIO f = GecCircuit k
where

k (setb ,geta ,env) = (seta ,getb ,env)

8

where
getb env

] (a ,env) = geta env
= f a env

seta u a env
] (b ,env) = f a env
= setb u b env

A warning is at its place here. With gecIO it is possible to
embed all kinds of Object I/O environment functions within
a GEC circuit. Although it is simply not possible to violate
the properties proven in Sect. 3.5 such environment func-
tions can include all kinds of interactive actions. Of course
it is up to the programmer to make sure that the overall
program still behaves in the intended way.

3.4 Feedback
Feedback to a circuit can be given using the following

definition of the feedback function. Of course the input and
the output must be of the same type (see its external view
in Fig. 17).

Figure 17: Feedback of a GEC circuit, external view.

feedback :: (GecCircuit a a) → GecCircuit a a
feedback (GecCircuit g) = GecCircuit k
where

k (seta ,geta ,env)
] (a ,env1) = geta ‘ env1
] env1 = seta ‘ NoUpdate a env1
= (seta ‘ ,geta ‘ ,env1)

where
(seta ‘ ,geta ‘ ,env1) = g (seta ‘ ‘ ,geta ,env)
seta ‘ ‘ u a env = seta u a (seta ‘ NoUpdate a env)

The way the feedback combinator constructs a feedback
circuit is by taking the value of the circuit and feeding it
back again into the circuit (see also Fig. 18 for its inter-
nal view). This is done in such a way that it will not be
propagated further when it arrives at a GEC editor. This is
achieved using NoUpdate (see also Sect. 2.1 in which NoUpdate

is introduced).

Figure 18: Feedback of a GEC circuit, internal view.

When a feedback circuit contains no editor at all, the
meaning of the circuit is undefined since in that case the
calculation of the result would depend on itself in a cir-
cular way. A feedback circuit in which each path of the
circuit contains an editor, is called well-formed. It is easy

to check syntactically whether feedback circuits are well-
formed. Consider the following examples of non well-formed
and well-formed feedback circuits.

nonWellFormed1 = feedback (arr id>>> arr ((+) 1))
nonWellFormed2 = feedback (arr id&&& edit "Int">>>

arr (λ(x , y) → x + y))
wellFormed = feedback (edit "Int">>> arr ((+) 1))

3.5 Properties
A GecCircuit a b is not a pure function from a to b (i.e.

without side effects). Instead, a GecCircuit a b is a pure
function from a get/set pair and a PSt ps to a get/set
pair and a PSt ps. Its definition is fully specified in Clean.
All the arrow combinators are also fully specified in Clean.
Clean functions may use Object I/O functions. In Object
I/O side effects are modelled via the abstract polymorphic
type PSt ps of which the single threaded use is guaranteed
by uniqueness typing. Apart from the assumption that all
side-effects are modelled in this way within Object I/O,
no other assumption is necessary in order to reason about
GecCircuits.

The fact that the basic definitions are fully given within
the programming language is quite different from the arrows
defined in the Yampa [13] and the Fruit system [10] where
the basic definitions rely on special semantic functions. In
that case proofs of arrow laws have to be done on the level of
the introduced semantics using appropriate reasoning tech-
niques for that semantic level.

In our case proofs can be done using the actual function
definitions and standard reasoning techniques for functional
programs. The main techniques we will use are unfolding
and extensionality.

3.5.1 Proving Arrow Laws
To illustrate the process of proving arrow properties we

will show how to prove the basic arrow laws that are stated
by John Hughes in [14]. They correspond roughly to the
monad laws.

• arr id >>> l = l = l >>> arr id

• (l >>> r) >>> s = l >>> (r >>> s)

• arr (g o f) = arr f >>> arr g

In expressing the laws above as well as in the rest of this
section, we consistently use f , g, and h for functions and
l, r, and s for circuits. We prove partial correctness only.
Hence, we will assume throughout this section that no values
or functions are undefined.

The first law states that the lifting combinator arr and the
composition combinator >>> are consistent with the identity
function.

arr id >>> l = l = l >>> arr id

Proof. There are two statements to prove: arr id >>> l
= l and l = l >>> arr id.

Take the first statement. The left-hand side can be trans-
formed by subsequent transformations to the right-hand side.
This proof is given in full detail in the appendix.

The proof of the other statement (l = l >>> arr id) is
analogous to the previous one.

Due to the length of the proofs we merely sketch other
proofs leaving it to the reader to work out the precise proof

9

steps. The second law states that composition of circuits is
left-associative.

(l >>> r) >>> s = l >>> (r >>> s)

Proof. The proof of this statement can be given easily
using the same techniques as with the previous proof. In this
case it is convenient to transform both the left-hand side and
the right-hand side of the property to a common equivalent
function. This equivalent function is gec_composition:

gec_composition /∗ = (l >>> r) >>> s = l >>> (r >>> s) ∗/
= GecCircuit k

where
k (setkb ,getka ,env) = (setka ,getkb ,env3)
where

(setka ,getlb ,env1) = l (setrb ,getka ,env)
(setrb ,getra ,env2) = r (setsa ,getlb ,env1)
(setsa ,getkb ,env3) = s (setkb ,getra ,env2)

Note that gec_composition naturally expresses the fact
that it is the composition of three circuit functions.

The third law states that lifting functions to circuits dis-
tributes over function composition into circuit composition.

arr (g o f) = arr f >>> arr g

Proof. We proceed as in the previous proof. We can
prove both sides of the property to be equivalent to the
single function arr_distribution:

arr_distribution /∗ = arr (g o f) = arr f >>> arr g ∗/
= GecCircuit k

where
k (setb ,geta ,env) = (seta ,getb ,env)
where

getb env
] (a ,env) = geta env
= (g (f a) ,env)

seta u a env = setb u (g (f a)) env

Note that arr_distribution naturally expresses composi-
tion of functions within a circuit.

This completes the proofs of the basic GEC arrow laws.
Other properties can be proven in a similar way.

3.5.2 Other properties of GEC Arrows
As is common with arrows, duplicating an arrow makes a

semantic difference, e.g.
l >>> (r &&& s) 6= (l >>> r) &&& (l >>> s)
For circuits the difference lies in the fact that duplicat-

ing a circuit may mean applying an environment function
twice. Clearly, the circuits edit >>> (arr id &&& arr id) and
(edit >>> arr id) &&& (edit >>> arr id) are not equivalent
since the first contains only one editor and the latter con-
tains two editors (also on-screen).

3.5.2.1 Propagation of edited values.
If a circuit contains a GEC component, then a change of

the value of that component will always propagate to the
end of the circuit starting at the edit component. In the
case of a well-formed feedback circuit, it will also propagate
to the beginning of the feedback circuit and to each path
from that point on up to the first GEC editor on that path.
An initial value propagates from the beginning of the circuit
to the end including possible feedbacks.

propagationexample
= arr ((+) 1) >>> edit "Propagation" >>> arr ((*) 2)

If propagationexample is created with initial value 0 then
the initial result of the circuit will be 2. When the value of
the edit component is changed by a user into 10, then this
value is propagated through the circuit to the end. There-
fore, the first lifted function is not applied and the result is
20 and not 21. Now, extend the example with a feedback

combinator:

propagationexample2 = feedback propagationexample

If propagationexample2 is created with initial value 0 then
the initial result of the circuit will be 2. However, the value
is also propagated through the feedback up to the edit com-
ponent. Therefore, the edit component will display 3.

When the value of the edit component is edited by a user
and changed into 10, then this value is propagated through
the circuit to the end. The result is 20. However, the value
is also propagated through the feedback up to the edit com-
ponent and the edit component will display 21.

The propagation mechanism achieves a natural behavior
from the user’s point of view.

3.6 Examples
We use the arrow combinator definitions from Sect. 3.1

in the examples that are given below. For each example of
Sect. 2.3, we give the definition using arrow combinators,
and some of the circuit structures as figures.

The first example (of which the external view is given in
Fig. 19) shows the arrow combinator version of the applyGECs

example of Sect. 2.3.

Figure 19: applyGECs using arrows, external view.

myEditor = startCircuit applyGECs [1 ,5 ,2]

applyGECs :: GecCircuit [Int] (Tree Int)
applyGECs = edit "List" >>>

arr balancedTree>>>
edit "Balanced Tree"

Again, two visual editors are shown. The first allows the
user to edit the (initial) list, and the second shows (and al-
lows the user to edit) the resulting balanced tree. In the
hand coded examples, the initial value of a GEC was speci-
fied at the time of its creation. Using the arrow combinators
to construct a GecCircuit, we specify the initial values for
all GECs when we start the circuit.

Particularly interesting is the use of the edit combinator
(see Sect. 3.1.1 for its definition). The example above has
two occurrences of edit. However, the occurrences do not
yield the same result since they are of different type. Due
to the way edit is defined with a generic function, it will
produce a circuit with an GEC[Int] editor component if the
inferred type is [Int] . However, if the inferred type for edit

is Tree Int then the resulting circuit contains a GECTree Int

editor component.

myEditor = startCircuit apply2GECs ([] , [])

10

Figure 20: apply2GECs using arrows, external view.

apply2GECs :: GecCircuit ([Int] , [Int]) (Tree Int)
apply2GECs = edit "list1" ∗∗∗ edit "list2">>>

arr makeBalancedTree >>>
edit "Balanced Tree"

where
makeBalancedTree (l1 ,l2) = balancedTree (l1 ++ l2)

The example above (see Fig. 20 for its external view)
shows the arrow combinator version of the apply2GECs exam-
ple. The initial values for the input lists are paired, to allow
the delayed initialization using startCircuit. The example
clearly shows that combining GECs using arrow combina-
tors is much more readable than the (often) recursive hand-
written functions. The linear flow of information between
GECs, using the >>> combinator, corresponds directly with
the code. Although splitting points in flow of information,
using the ∗∗∗ combinator, is less clear, it is still easier on the
eyes than the examples of Sect. 2.3.

The example below shows the arrow combinator version
of the first selfGEC example (see its external view in Fig.
21). This example makes use of feedback, and is obviously
well-formed.

Figure 21: selfGEC using arrows, external view.

myEditor = startCircuit selfGEC Leaf

selfGEC :: GecCircuit (Tree Int) (Tree Int)
selfGEC = feedback (arr (balancedTree o toList) >>>

edit "Self Balancing Tree")

The counter and function examples below are also conve-
niently, and concisely, expressed using arr and >>>.

myEditor = startCircuit selfGEC (0 ,Neutral)

selfGEC :: GecCircuit Counter Counter
selfGEC = feedback (arr updCntr>>> edit "Counter")

myEditor = startCircuit selfGEC (toGEC funTest)

selfGEC = arr (toGEC o updFun o fromGEC) >>>
edit "test operator"

This completes the arrow combinator versions of the ex-
amples of Sect. 2.3.

As a somewhat larger, and more tantalizing, example we
show the basic structure of a GEC for GECs below. We use
quite complex GECs that allow the user to edit the type and
visual appearance of another GEC. These editors are not

shown because we want to emphasize on GEC circuits here,
not the internal workings of the editors themselves. The
information flow between these editors can, again, nicely be
expressed using the arrow combinators.

Both the editor for designing an GEC, as well as the editor
that displays, and allows the designer to interact with, the
designed GEC use an well-formed feedback loop. Auxiliary
conversion, and state carrying, functions are lifted using the
arr combinator. Both editors are combined (without feed-
back) using the >>> combinator.

editorEditor = startCircuit (designEditor >>>
arr convert >>>
applicationEditor)initvalue

designEditor :: GecCircuit DesignEditor DesignEditor
designEditor = feedback (

toDesignEditor >>>
edit "design" >>>
arr (updateDesign o fromDesignEditor))

applicationEditor :: GecCircuit ApplicationEditor
ApplicationEditor

applicationEditor = feedback (
arr (toApplicEditor o updateApplication) >>>
edit "application" >>>
arr fromApplicEditor)

4. RELATED WORK
In [14] John Hughes introduces arrows as a structuring

tool for combinator libraries that is more general than us-
ing monads [19] for combinator libraries. Examples of the
use of arrows are given for various application areas such as
parsers, interpreters, stream processors, and CGI program-
ming. The stream processors are basically the same as those
presented in the Fudgets library [8].

Other authors have applied the arrow concept for compo-
sitional programming of Functional Reactive Programs (the
Yampa system [13] for mobile robots), and, again, GUI pro-
gramming (the Fruit system [10]). In both cases arrows com-
pose signal transformers, which are functions that transform
one continuous time-varying value of some type a to another
of some type b. Both systems handle discrete events, by
modeling event streams as continuous time-varying Maybe

values.
The system of combining GECs with arrows, as proposed

in this paper, bears the most resemblance with the above
mentioned Fudgets. Both systems are collections of event-
driven components that can trigger events autonomously,
and synchronize with each other (using streams with Fud-
gets, and arrow combinators with GECs). However, the
main difference is that in our system, the programmer does
not have to use arrow combinators. For more complex syn-
chronization behaviour the programmer can always use the
callback mechanism of GECs.

Finally, the GEC system differs from all of these systems
in its level of abstraction from GUI programming. The
programmer concentrates on the model (this includes the
model of GUI) instead of working with GUI elements such
as buttons, counters, windows, and so on, that can only
be connected with a restricted set of operations. Moreover,
GEC code can be mixed with Object I/O code, as explained
in Sect. 2.2 and 3.3. To our knowledge there is no other
functional system for describing general purpose GUIs that
achieves the same level of abstraction with such a complete

11

separation of model and GUI without loss of flexibility be-
cause it is integrated seamlessly with Object I/O.

5. CONCLUSIONS
In this paper we have presented the Graphical Editor pro-

gramming toolkit for constructing and composing GUI com-
ponents on a high level of abstraction and in a fully com-
positional way. The programmer does not construct GUI
components in the ‘traditional’ way by managing widget-
like entities, but instead concentrates on the data model of
his application. The system automatically derives the in-
tended GUI from concrete values of this data model, using
generic programming techniques. Therefore, programming
GUI components is as easy and as compositional as program-
ming functional data structures. We have founded a library
of GUI component combinators on arrow combinators. This
facilitates the composition of components.

As a result, we have obtained a system that has three
distinctive features. The programmer constructs arbitrarily
large GUI components using (abstract) GECs. These com-
ponents can be glued together using the arrow combinator
library. (We expect that these circuits tend to be small when
compared to the size and complexity of the components.)
The programmer can still use Object I/O code where needed
without effort.

We have shown how to prove the corresponding arrow laws
for our system. It turns out that these proofs can be car-
ried out using standard reasoning techniques for functional
programs. In particular, we do not have to resort to some
underlying semantic model for GECs.

6. REFERENCES
[1] P. Achten. Interactive Functional Programs - models,

methods, and implementations. PhD thesis, University
of Nijmegen, The Netherlands, 1996.

[2] P. Achten and S. Peyton Jones. Porting the Clean
Object I/O library to Haskell. In M. Mohnen and
P. Koopman, editors, Proceedings of the 12th
International Workshop on the Implementation of
Functional Languages, IFL’00, Selected Papers,
volume 2011 of LNCS, pages 194–213. Aachen,
Germany, Springer, Sept. 2001.

[3] P. Achten and R. Plasmeijer. Interactive Functional
Objects in Clean. In C. Clack, K. Hammond, and
T. Davie, editors, Proc. of the 9th International
Workshop on the Implementation of Functional
Languages, IFL 1997, Selected Papers, volume 1467 of
LNCS, pages 304–321. St.Andrews, UK, Springer,
Sept. 1998.

[4] Achten, Peter, van Eekelen, Marko and Plasmeijer,
Rinus. Generic Graphical User Interfaces. In Greg
Michaelson and Phil Trinder, editors, Selected Papers
of the 15th Int. Workshop on the Implementation of
Functional Languages, IFL03, LNCS. Edinburgh, UK,
Springer, 2003. To appear.

[5] Achten, Peter, van Eekelen, Marko and Plasmeijer,
Rinus. Compositional Model-Views with Generic
Graphical User Interfaces. In Practical Aspects of
Declarative Programming, PADL04, LNCS. Springer,
2004. To appear.

[6] A. Alimarine and R. Plasmeijer. A Generic
Programming Extension for Clean. In T. Arts and

M. Mohnen, editors, The 13th International workshop
on the Implementation of Functional Languages,
IFL’01, Selected Papers, volume 2312 of LNCS, pages
168–186. Älvsjö, Sweden, Springer, Sept. 2002.

[7] E. Barendsen and S. Smeters. Graph Rewriting
Aspects of Functional Programming, chapter 2, pages
63–102. World scientific, 1999.

[8] M. Carlsson and T. Hallgren. Fudgets - a graphical
user interface in a lazy functional language. In
Proceedings of the ACM Conference on Functional
Programming and Computer Architecture, FPCA ’93,
Kopenhagen, Denmark, 1993.

[9] D. Clarke and A. Löh. Generic Haskell, Specifically. In
J. Gibbons and J. Jeuring, editors, Generic
Programming. Proceedings of the IFIP TC2 Working
Conference on Generic Programming, pages 21–48,
Schloss Dagstuhl, July 2003. Kluwer Academic
Publishers. ISBN 1-4020-7374-7.

[10] A. Courtney and C. Elliott. Genuinely Functional
User Interfaces. In Proceedings of the 2001 Haskell
Workshop, September 2001.

[11] R. Hinze. A new approach to generic functional
programming. In The 27th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 119–132. Boston,
Massachusetts, January 2000.

[12] R. Hinze and S. Peyton Jones. Derivable Type
Classes. In G. Hutton, editor, 2000 ACM SIGPLAN
Haskell Workshop, volume 41(1) of ENTCS. Montreal,
Canada, Elsevier Science, 2001.

[13] P. Hudak, A. Courtney, H. Nilsson, and J. Peterson.
Arrows, Robots, and Functional Reactive
Programming. In J. Jeuring and S. Peyton Jones,
editors, Advanced Functional Programming, 4th
International School, volume 2638 of LNCS, Oxford,
2003. Springer.

[14] J. Hughes. Generalising Monads to Arrows. Science of
Computer Programming, 37:67–111, May 2000.

[15] S. P. Jones and J. H. et al. Report on the programming
language Haskell 98. University of Yale, 1999.
http://www.haskell.org/definition/.

[16] R. Plasmeijer and M. van Eekelen. Concurrent
CLEAN Language Report (version 2.0), December
2001.
http://www.cs.kun.nl/∼clean/contents/contents.html.

[17] A. van Weelden and R. Plasmeijer. A functional shell
that dynamically combines compiled code. In
P. Trinder and G. Michaelson, editors, Selected Papers
Proceedings of the 15th International Workshop on
Implementation of Functional Languages, IFL’03.
Heriot Watt University, Edinburgh, Sept. 2003. To
appear.

[18] M. Vervoort and R. Plasmeijer. Lazy dynamic
input/output in the lazy functional language Clean. In
R. Peña and T. Arts, editors, The 14th International
Workshop on the Implementation of Functional
Languages, IFL’02, Selected Papers, volume 2670 of
LNCS, pages 101–117. Springer, Sept. 2003.

[19] P. Wadler. Comprehending Monads. In Proceedings of
the 1990 ACM Conference on Lisp and Functional
Programming, pages 61–77, Nice, France, 1990.

12

APPENDIX
arr id>>> l
= /∗ unfolding arr , moving def. of k to top−level ∗/
(GecCircuit k) >>> l
where

k (setb ,geta ,env) = (seta ,getb ,env)
where

getb env
] (a ,env) = geta env
= (id a ,env)

seta u a env = setb u (id a) env
= /∗ unfolding id (two occurrences) ∗/
(GecCircuit k) >>> l
where

k (setb ,geta ,env) = (seta ,getb ,env)
where

getb env
] (a ,env) = geta env
= (a ,env)

seta u a env = setb u a env
= /∗ by unfolding the] inside the definition of getb ∗/
(GecCircuit k) >>> l
where

k (setb ,geta ,env) = (seta ,getb ,env)
where

getb env = geta env
seta u a env = setb u a env

= /∗ extensionality ∗/
(GecCircuit k) >>> l
where

k (setb ,geta ,env) = (seta ,getb ,env)
where

getb = geta
seta = setb

= /∗ unfolding getb and seta ∗/
(GecCircuit k) >>> l
where

k (setb ,geta ,env) = (setb ,geta ,env)
= /∗ assuming l = GecCircuit lk (definedness) ∗/
(GecCircuit k) >>> GecCircuit lk
where

k (setb ,geta ,env) = (setb ,geta ,env)
= /∗ unfolding >>> ∗/
GecCircuit k’
where

k’ (setc ,geta ,env) = (seta ,getc ,env2)
where

(seta ,getb ,env1) = k (setb ,geta ,env)
(setb ,getc ,env2) = lk (setc ,getb ,env1)
where

k (setb ,geta ,env) = (setb ,geta ,env)
= /∗ unfolding k ∗/
GecCircuit k’
where

k’ (setc ,geta ,env) = (seta ,getc ,env2)
where

(seta ,getb ,env1) = (setb ,geta ,env)
(setb ,getc ,env2) = lk (setc ,getb ,env1)

= /∗ injectivity of the f i rs t tuple definition ∗/
GecCircuit k’
where

k’ (setc ,geta ,env) = (seta ,getc ,env2)
where

seta = setb
getb = geta
env1 = env
(setb ,getc ,env2) = lk (setc ,getb ,env1)

= /∗ unfolding seta , getb and env1 ∗/
GecCircuit k’
where

k’ (setc ,geta ,env) = (setb ,getc ,env2)
where

(setb ,getc ,env2) = lk (setc ,geta ,env)

= /∗ unfolding the inner where definition ∗/
GecCircuit k’
where

k’ (setc ,geta ,env) = lk (setc ,geta ,env)
= /∗ extensionality ∗/
GecCircuit lk
= /∗ by definition ∗/
l

13

