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Abstract. In this paper we explain how dynamics can be communi-
cated between independently programmed Clean applications. This is
an important new feature of Clean because it allows type safe exchange
of both data and code. In this way mobile code and plug-ins can be
realized easily. The paper discusses the most important implementation
problems and their solutions in the context of a compiled lazy functional
language. The implemented solution reflects the lazy semantics of the
language in an elegant way and is moreover quite efficient. The resulting
rather complex system in which dynamics can depend on other dynam-
ics, is effectively hidden from the user by allowing her to view dynamics
as ”typed files” that can be manipulated like ordinary files.

1 Introduction

The new release of the Clean system [11] offers a hybrid type system with both
static and dynamic typing. Any statically typed expression can in principle be
converted into a dynamically typed expression i.e. a dynamic, and backwards.

The type stored in the dynamic, i.e. an encoding of the original static type,
can be checked at run-time via a special pattern match after which the dynamic
expression can be evaluated as efficiently as usual.

In this paper we discuss the storage and the retrieval of dynamics: any appli-
cation can read a dynamic that has been stored by some other application. Such
a dynamic can contain unevaluated function applications, i.e. closures, functions
and types that are unknown to the receiving application. The receiving appli-
cation therefore has to be extended with function definitions. Dynamics can be
used to realize plug-ins, mobile code and persistency in a type safe way without
loss of efficiency in the resulting code.

The integration of strongly typed lazy dynamic I/O in a compiled environ-
ment with minimal changes to the existing components of the system while
maintaining efficiency and user-friendliness, requires a sophisticated design and
implementation. This paper presents the most interesting problems and their
solutions by means of examples.
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This work is based on earlier work by Cardelli [1] who introduced the the-
oretical foundations of dynamics. Marco Pil has extended and adapted it for
Clean. In contrast to his work [9] and [10], this paper addresses the I/O aspects
of dynamics. Dynamic I/O is the input and output of dynamics by appropriate
extensions of the compilation environment and its run-time system.

Our contribution is that we have designed and implemented an efficient ex-
tension of the Clean compilation environment and its run-time system to support
lazy dynamic I/O. The presented solution can also be applied to other lazy func-
tional programming languages such as Haskell [5].

The outline of this paper is as follows. In section 2 we introduce the elemen-
tary operations of dynamics: packing and unpacking. In section 3 we introduce
I/O of dynamics: dynamic I/O. The requirements and the architecture are pre-
sented in section 4. For reasons of efficiency, dynamics are divided into pieces.
This is explained in section 5. This splitting up of dynamics can cause sharing
problems. These are solved in section 6. In section 7 we explain how we have
managed to hide the resulting complexity of the system from the user. The paper
concludes with related work, conclusions and future work.

2 Elementary language operations on dynamics

A dynamic basically is a typed container for an ordinary expression. The ele-
mentary operations on dynamics are packing and unpacking. In essence these
elementary operations convert a statically typed expression into its dynamically
typed equivalent and vice versa.

2.1 Packing a typed expression into a dynamic

A dynamic is built using the keyword dynamic. Its arguments are the expression
to be packed into a dynamic and, optionally, the static type t of that expres-
sion. The actual packing is done lazily. The resulting dynamic is of static type
Dynamic. A few examples are shown below:

(dynamic True :: Bool ) :: Dynamic

(dynamic fib 3 ) :: Dynamic

(dynamic fib :: Int -> Int ) :: Dynamic

(dynamic reverse :: A.a: [a] -> [a] ) :: Dynamic

A dynamic should at least contain:

– The expression to be packed, which is called the dynamic expression for the
rest of this paper.

– An encoding of its static type t (either explicitly specified or inferred), which
is called the dynamic type for the rest of this paper.



2.2 Unpacking a typed expression from a dynamic

Before a dynamically typed expression enclosed in a dynamic can be used, it
must be converted back into a statically typed expression and made accessible.
This can be achieved by a run-time dynamic pattern match.

A dynamic pattern match consists of an ordinary pattern match and a type
pattern match. First, the type pattern match, on the dynamic type is executed.
Only if the type pattern match succeeds, the ordinary pattern match on the
dynamic expression is performed. If the ordinary pattern match succeeds, the
right hand side of an alternative is executed. Otherwise, evaluation continues
with the next alternative. A small example is shown below:

f :: Dynamic -> Int

f (0 :: Int) = 0

f (n :: Int) = n * n + 1

f else = 1

The dynamic pattern match of the first alternative requires the dynamic type
to be an integer type and the dynamic expression to be zero. If both conditions
are met, zero is returned. The second alternative only requires the dynamic type
to be an integer. The third alternative handles all remaining cases.

The example below shows the dynamic version of the standard apply func-
tion:

dyn_apply :: Dynamic Dynamic -> Dynamic

dyn_apply (f :: a -> b) (x :: a) = dynamic (f x) :: b

dyn_apply else1 else2 = abort "dynamic type error"

The function takes two dynamics and tries to apply the dynamic expression
of the first dynamic to the dynamic expression of the second. In case of success,
the function returns the (lazy) application of the function to its argument in a
new dynamic. Otherwise the function aborts.

The multiple occurrence of the type pattern variable a effectively forces uni-
fication between the dynamic types of the two input dynamics. If the first al-
ternative succeeds, the application of the dynamic expression f to the dynamic
expression x is type-safe.

3 Dynamic I/O: writing and reading typed expressions

Different programs can exchange dynamically typed expressions by using dy-
namic I/O. In this manner, plug-ins and mobile code can be realized. To achieve
this, the system must be able to store and retrieve type definitions and func-
tion definitions associated with a dynamic. Among other things, this requires
dynamic linking.



3.1 Writing a dynamically typed expression to file

Any dynamic can be written to a file on disk using the writeDynamic function
of type String Dynamic *World -> *World. In the producer example below
a dynamic is created which consists of the application of the function sieve

to an infinite list of integers. This dynamic is then written to file using the
writeDynamic function.

Evaluation of a dynamic is done lazily. As a consequence, the application of
sieve to the infinite list, is constructed but not evaluated because its evaluation
is not demanded. We will see that the actual computation of a list of prime
numbers will be triggered later by the consumer.

producer :: *World -> *World

producer world = writeDynamic "primes" (dynamic sieve [2..]) world

where

sieve :: [Int] -> [Int]

sieve [prime:rest] = [prime : sieve filter ]

where

filter = [ h \\ h <- rest | h mod prime <> 0 ]

More information than the dynamic expression and its type have to be stored
at run-time, if the dynamic is to be used as a plug-in by applications other than
its creating application. We also need:

– The function definitions required for the evaluation of the dynamic expres-
sion. A severe complication here is that these function definitions have been
compiled to native machine code. When the dynamic is used, these compiled
function definitions have to be added to the running application.

– The type definitions required for matching the dynamic type against the type
pattern specified in the dynamic pattern. The type definitions are needed
because different Clean applications may have different definitions of equally
named types. A type definition check is only needed to check that equally
named types are indeed equivalent.

In general this information is already known at compile-time, but it should
be made accessible at run-time.

3.2 Reading a dynamically typed expression from file

Any dynamic can be read from disk using the readDynamic function of type
String *World -> (Dynamic,*World). This readDynamic function is used in
the consumer example below to read the earlier stored dynamic. The dynamic
pattern match checks whether the dynamic expression is an integer list. In case
of success the first 100 elements are taken. Otherwise the consumer aborts.

consumer :: *World -> [Int]

consumer world

# (dyn, world) = readDynamic "primes" world



= take 100 (extract dyn)

where

extract :: Dynamic -> [Int]

extract (list :: [Int]) = list

extract else = abort "dynamic type check failed"

To turn a dynamically typed expression into a statically typed expression,
the following steps need to be taken:

1. Unify the dynamic type and the type pattern of the dynamic pattern match.
If unification fails, the dynamic pattern match also fails.

2. Check the type definitions of equally named types from possibly different
applications for structural equivalence provided that the unification has been
successful. If one of the type definition checks fails, the dynamic pattern
match also fails. Equally named types are equivalent iff their type definitions
are syntactically the same (modulo α-conversion and the order of algebraic
data constructors).

3. When evaluation requires the now statically typed expression, construct it
and add the needed function definitions to the running application.

The addition of compiled function definitions and type definitions referenced
by the dynamic being read is handled by the dynamic linker.

4 Architecture for dynamic I/O

The architecture based on requirements listed in this section, is presented. The
context it provides is used by the rest of this paper.

4.1 Requirements

Our requirements are:

– Correctness. We want the system to preserve the language semantics of dy-
namics: storing and retrieving an expression using dynamic I/O should not
alter the expression and especially not its evaluation state.

– Efficiency. We want dynamic I/O to be efficient.

– Preservation of efficiency. We do not want any loss of efficiency compared to
ordinary Clean programs not using dynamics, once a running program has
been extended with the needed function definitions.

– View dynamics as typed files. We want the user to be able to view dynam-
ics on disk as ”typed files” that can be used without exposing its internal
structure.



4.2 Architecture

For the rest of this paper, figure 1 provides the context in which dynamic I/O
takes place.

The Clean source of an application consists of one or more compilation units.
The Clean compiler translates each compilation unit into compiled function def-
initions represented as symbolic machine code and compiled type definitions.
The compiled function and type definitions of all compilation units are stored in
the application repository.

Application 1 uses the writeDynamic function to create a dynamic on disk.
The dynamics refers to the application repository.

Application 2 uses the readDynamic function to read the dynamic from disk.
If the evaluation of the dynamic expression is required after a successful dynamic
pattern match, the dynamic expression expressed as a graph is constructed in
the heap of the running application. The dynamic linker adds the referenced
function and type definitions to the running application. Then the application
resumes normal evaluation.

Fig. 1. Architecture of dynamic I/O.

Some of the requirements are already (partially) reflected in the architecture:

– Efficiency. The figure shows that the dynamic expression and its dynamic
type can be identified separately from each other. Therefore the rather ex-
pensive construction of the dynamic expression can be postponed until its
dynamic type is successfully pattern matched. The next sections refine this
laziness even more.



The figure also shows that a dynamic does not contain the compiled func-
tion and type definitions. The dynamic merely refers to the repository which
means that dynamics can share repositories and especially function defini-
tions that have already been compiled. This sharing reduces the expensive
cost of linking function definitions.

– Preservation of efficiency. As the figure shows compiled function definitions
are used by dynamics. The very same function definitions are also used by
ordinary Clean programs not using dynamic I/O. Therefore after dynamic
I/O completes, the program is resumed at normal efficiency.

5 Partitions: dynamic in pieces

In this section, we explain that dynamics are not constructed in their entirety but
in smaller pieces called partitions. This is sensible because often the evaluator
does not need all pieces of a dynamic. As a consequence the expensive linking
process of function definitions is postponed until required.

5.1 Dynamics are constructed piece by piece

Up until now, we have implicitly assumed that dynamics are constructed in
their entirety. But only the following steps need to be taken, to use a dynamic
expression (nested dynamics may contain more dynamic expressions):

1. Read a dynamic type from file.
2. Decode the type from its string representation into its graph representation.
3. Do the unifications specified by the dynamic pattern match.

Only after successful unifications :
4. Read the dynamic expression from file.
5. Decode the expression from its string representation into its graph represen-

tation.

We have decided to construct a dynamic piece by piece for reasons of effi-
ciency. In general the construction of a dynamic in its entirety is both unneces-
sary and expensive. For example when a dynamic pattern match fails, then it
is unnecessary to construct its dynamic expression. Moreover, it is even expen-
sive because it would involve the costly process of linking the compiled function
definitions.

As a consequence, a dynamic which is represented at run-time as a graph,
must be partitioned. The (nested) dynamic expressions and the dynamic types
should be constructible from the dynamic by its partitions.

5.2 Partitions

Partitions are pieces of graph encoded as strings on disk which are added in their
entirety to a running application. Partitions are:



– (parts of) a dynamic expressions.
– (parts of) a dynamic types.
– subexpressions shared between dynamic expressions.

In this paper we only present the outline of a näıve partitioning algorithm
which colours the graph representing the dynamic to be encoded:

– A set of colours is associated with each node of the graph. A unique colour
is assigned to each dynamic expression and to each dynamic type.

– If a node is reachable from a dynamic expression or from a dynamic type,
then the colour assigned to that dynamic expression or that dynamic type
is added to the colour set of that node.

We have chosen a partition to be a set of equally coloured graphs: the colour
sets of the graph nodes must all be the same. This maximizes the size of a
partition to reduce linker overhead. Any other definition of a partition would
also do, as long as it contains only equally coloured nodes.

For example, consider the Producer2 example below. After partitioning the
shared_dynamic expression, the encoded dynamic consists of seven partitions.
There are three dynamics involved. For each dynamic two partitions are created:
one partition for the dynamic expression and one partition for its type. An
additional partition is created for the shared tail expression.

Producer2 :: *World -> *World

Producer2 world = writeDynamic "shared_dynamic" shared_dynamic world

where

shared_dynamic = dynamic (first, second)

first = dynamic [1 : shared_expr ]

second = dynamic [2 : shared_expr ]

shared_expr = sieve [3..10000]

5.3 Entry nodes

In general several different nodes within a partition can be pointed to by nodes
of other partitions. A node of a partition is called an entry node iff it is be-
ing pointed to by a node of another partition. For the purpose of sharing, the
addresses of entry nodes of constructed partitions have to be retained. The fol-
lowing example shows that a partition can have multiple entry nodes:

:: T = Single T | Double T T

f = dynamic (dynamic s1, dynamic s2)

where

s1 = Single s2

s2 = Double s1 s2

The nodes s1 and s2 form one partition because both nodes are reachable
from the (nested) dynamics in the f function and from each other. Both nodes
therefore have the same colour sets. Both nodes are pointed to by the nested
dynamics, which makes them both entry nodes. Apart from cyclic references,
multiple entry nodes can also occur when dynamics share at least two nodes
without one node referencing the other.



5.4 Linking the function definitions of a partition

The dynamic linker takes care of providing the necessary function definitions
when evaluation requires a partition to be decoded. The decoding of a partition
consists of:

1. the linking of its compiled function definitions. The references between the
compilation units stored in the repositories are symbolic. The dynamic linker
for Clean resolves these references into binary references. This makes the
function definitions executable. The linker optimizes by only linking the
needed function definitions and its dependencies.

2. the construction of the graph from its partition. The graph consists of a set of
nodes and each node references a function definition i.e. a Clean function or a
data constructor. The encoded references to function definitions of each node
are resolved in run-time references to the earlier linked function definitions.

The dynamic linker has the following additional tasks:

– It checks the equivalence of equally named type definitions. This is used
during unification and to preserve the semantics of ordinary pattern matches.
The Clean run-time system identifies data constructors by unique addresses
in memory. In case of equivalent type definitions, it must be ensured that
equally named constructors are all identified by a single unique address.
Therefore the dynamic linker guarantees that:

• There is only a single implementation for equally named and structural
equivalent types.

• All references to data constructors e.g. in dynamic pattern matches,
point to that single implementation.

– It presents dynamics to the user as typed files abstracting from the complex
representation of a dynamic. Section 8 discusses this topic in more detail.

6 Sharing of partitions

Partitioned dynamics may lose sharing. Efficiency can be increased by preserving
sharing as much as possible. In this section we identify three cases in which
sharing needs to be preserved. We conclude by discussing one solution for all
cases to prevent loss of sharing.

6.1 Case 1: References between dynamics on disk

In this subsection, we show that sharing between dynamics on disk can be pre-
served. The example below extends the dynamic apply example by using the
readDynamic and writeDynamic functions to perform I/O. The fun-dynamic
from the file application (e.g. your favourite word-processor) and the arg-
dynamic from the file document (e.g. the paper you are writing) are passed to
the dynamic apply function dyn_apply which returns a new dynamic. The new
dynamic is stored in the file result (e.g. a new version of your paper).



Start world

# (fun, world) = readDynamic "application" world

# (arg, world) = readDynamic "document" world

= writeDynamic "result" (dyn_apply fun arg) world

where

dyn_apply :: Dynamic Dynamic -> Dynamic

dyn_apply (f :: a -> b) (x :: a) = dynamic (f x) :: b

dyn_apply else1 else2 = abort "dynamic type error"

The function application of fun to its argument arg itself is packed into the
dynamic because the dynamic constructor is lazy in its arguments. Since the
evaluation of fun and arg is not required, the system does not read them in at
all.

For this example only the first three steps of subsection 5.1 have to be exe-
cuted to use the dynamic expressions. The reason is that the dynamic expressions
f and x were never required. We preserve the sharing between dynamics on disk
by allowing dynamic expressions to be referenced from other dynamics on disk.

As figure 2 shows, the dynamic stored in the file result contains two ref-
erences to the application and document dynamics. To be more precise these
references refer to the dynamic expressions of both dynamics. In general a dy-
namic is distributed over several files. Section 7 abstracts from this internal
structure by permitting dynamics to be viewed as typed files.

Fig. 2. Sharing between dynamics on disk after the dynamic apply.



6.2 Case 2: Sharing within dynamics at run-time

In this subsection, we show that the sharing of partitions at run-time can also
be preserved. For example, the Producer2 function of subsection 5.2 stores the
dynamic shared_dynamic on disk. The stored dynamic is a pair of the two other
dynamics first and second. The dynamic expressions of these nested dynamics
both share the tail of a list called shared_expr.

The consumer application reads the dynamic written by the producer appli-
cation. If the dynamic pattern matches succeed, the function returns the length
of both lists.

Consumer2 :: *World -> *(Int, *World)

Consumer2 world

# (dyn,world) = readDynamic "shared_dynamic" world

= (g dyn,world)

where

g :: Dynamic -> Int

g ( (list1 :: [Int], list2 :: [Int]) :: (Dynamic,Dynamic) )

= length list1 + length list2

The lists stored in the dynamic shared_dynamic are lazy: they are indepen-
dently constructed from each other when evaluation requires one of the lists.
The length of list1 is computed after constructing its head (i.e. 1) and its tail
(which it shares with list2). Then the length of the second list is computed
after constructing its head (i.e. 2) and reusing the tail (shared with list1). In
this manner sharing at run-time can be preserved.

In general, the order in which partitions are constructed is unpredictable
because it depends on the evaluation order. Therefore partitions must be con-
structible in any order.

6.3 Case 3: Sharing and references within dynamics on disk

In this subsection, we show that sharing can also be preserved across dynamic
I/O. It combines the preservation of sharing discussed in subsections 6.1 and
6.2. In contrast to the dynamic stored in the example of subsection 5.2, the first
component of the dynamic stored by the consumer_producer function shown
below has been completely evaluated. From the second tuple component only
the tail which list2 shares with the first component has been constructed. Its
head is merely a reference to a partition of the dynamic shared_dynamic. Thus
the newly created dynamic stores the same expression but in a more evaluated
state.

consumer_producer :: *World -> *World

consumer_producer world

# (dyn,world) = readDynamic "shared_dynamic" world

# (list1,list2) = check dyn

| length list1 <> 0 // force evaluation of list1

# list_dynamic



= dynamic (list1,list2)

= writeDynamic "partially_evaluated_dynamic" list_dynamic world

where

check :: Dynamic -> ([Int],[Int])

check ( (list1 :: [Int], list2 :: [Int]) :: (Dynamic,Dynamic) )

= (list1,list2)

The dynamic named partially_evaluated_dynamic is read by an also mod-
ified consumer example from the previous subsection. To compute the total
length, it should only construct the head of the second list i.e. 2 because the
shared tail expression constructed in the slightly modified consumer example of
above can be reused.

To preserve sharing across dynamic I/O, the consumer_producer must also
store on disk that the partition for the shared tail has already been constructed.
In this manner sharing within a dynamic can be preserved across dynamic I/O.

6.4 A solution to preserve sharing during decoding

In this subsection we explain how dynamic expressions and dynamic types are
decoded by inserting so-called decode-nodes for each dynamic expression or dy-
namic type while preserving sharing. A decode-node reconstructs its dynamic
expression or its dynamic type when evaluated.

The decoding of a dynamic expression or a dynamic type may require the
decoding of several partitions at once. For example, consider the Consumer2 func-
tion of subsection 6.2: the dynamic expression list1 extends over two partitions:
a partition which contains the head and a partition containing its tail.

We have decided to construct a dynamic expression or a dynamic type in its
entirety. For example when the function length is about to evaluate the list,
the dynamic expression is constructed in its entirety by constructing the head
and its tail from its two partitions. The other option would be to construct a
partition at a time but this is not discussed in this paper.

Decode-nodes are implemented as closure-nodes i.e. a node containing an
unevaluated function application to postpone evaluation until really required.
Decode-nodes which refer to an entry node of the partition it decodes, are put
at the lazy argument positions of the dynamic-constructor.
A decode node has the following arguments:

1. An entry node of the dynamic partition. Dynamic partitions are those par-
titions which are directly referenced from the lazy argument positions of the
keyword dynamic. All other partitions are called shared partitions. An ex-
ample of a shared partition is the partition for shared_expr of subsection
5.2.

2. The list of entry nodes from already decoded partitions. This list is used at
run-time to preserve sharing within dynamics as discussed in subsection 6.2.

Upon decoding a partition via an entry-node, it is first checked whether the
dynamic partition has already been decoded. In this case it is sufficient to return



the address of the entry node to preserve sharing (see 6.2). Otherwise the dy-
namic partition must be decoded. After the shared partitions have been decoded
in an appropriate order, the dynamic partition itself is decoded. The entry-nodes
of decoded partitions are stored in the list of already decoded partitions. The
address of the entry node of the dynamic partition is returned.

We now show how the sharing discussed in subsections 6.1 and 6.3 can be
solved. To preserve the sharing of the former subsection, it is already sufficient
to encode decode-nodes. To preserve the sharing of the latter subsection, the
second argument of a decode-node must be encoded in a special way.

The dynamic partially_evaluated_dynamic of subsection 6.3 contains the
encoded decode-node. The second argument of the decode-node only contains
the shared tail shared_expr because it is shared between list1 and the not yet
decoded list2, and both lists are contained in the dynamic list_dynamic. In
this manner sharing is preserved.

In general after encoding a dynamic d, the encoded second arguments of the
decode-nodes of a nested dynamic n should only contain a subset of the already
decoded partitions. This subset can be computed by only including those decoded
partitions that are reachable from the decode-nodes of a dynamic n and leaving
out the partitions which are not re-encoded in dynamic d. Therefore the list
of encoded decode-nodes only contains those partitions which are already used
within that newly created dynamic.

7 User view of dynamics on disk

The complexity of dynamics is hidden from the user by distinguishing between
a user level and a hidden system level. Dynamics are managed as typed files by
the users. Only for deletion and copying dynamics to another machine additional
tool support is required.

7.1 The system level

This layer contains the actual system dynamics with the extension sysdyn and
the executable application repositories with the extensions typ and lib. A system
dynamic may refer to other system dynamics and repositories. These files are all
hidden and managed by the dynamic run-time system. User file access is haz-
ardous and therefore not permitted. For example, deleting the system dynamic
document renders the system dynamic result unusable.

All system dynamics and system repositories are stored and managed in a
single system directory. This may quickly lead to name clashes; dynamics need
to have unique names within the system directory.

We have chosen to solve the unique naming problem by assigning a unique
128-bit identifier to each system dynamic. The MD5 -algorithm in [12] is used to
compute a unique identifier. The generated unique names of system dynamics
and repositories are hidden from the user.



Fig. 3. System organization after executing the dynamic apply.

7.2 The user level

The user level merely contains links to the system layer. Links to system dy-
namics have the dyn extension and links to application repositories have the bat
extension. These files may freely be manipulated (deleted, copied, renamed) by
the user. This does not affect the integrity of the (system) dynamics.

Manipulation of user dynamics may have consequences for system dynamics
and repositories, however. The following file operations need tool support:

– The deletion of a user dynamic. When the user deletes a user dynamic or a
dynamic application, system dynamics and repositories may become garbage.
These unreferenced dynamics and repositories can safely be removed from
the system by a garbage collector. For example first deleting the user dy-
namic document does not create garbage in the system level but deleting the
user dynamic result makes its system dynamic result garbage and also
the system dynamic document.

– The copying of a user dynamic to another machine. When the user copies a
user dynamic to another machine, its system dynamic and the other system
dynamics and repositories it refers to, need to be copied too. The copying
tool takes care of copying a dynamic and its dependencies. Using a network
connection, it only copies dynamics and repositories not already present
at the other end. The unique MD5-identification of dynamics makes this
possible.

8 Related work

There have been several attempts to implement dynamic I/O in a wide range
of programming languages including the strict functional language Objective
Caml [6], the lazy functional languages Staple [7] and Persistent Haskell [3],
the orthogonal persistent imperative language Napier88 [8], the logic/functional
language Mercury [4] and the multiple paradigm language Oz [13]. In standard
Haskell only language support for dynamics is provided; it has therefore not been
considered. The table below compares the different approaches:



Dynamic Clean Ocaml Staple Napier88 Mercury Pers. Haskell Oz

native code + + − + + + −

data objects + + + + + + +
closures/functions + − + + − + +
application indep. + +/− + + +/− + +
platform indep. − +/− − − +/− − +
network + +/− − − +/− − +
lazy I/O + − − − − − −

Within the table + and − indicate the presence or the absence of a left col-
umn feature for dynamic I/O. A slashed table entry discriminates between data
objects on the one hand and closures/functions on the other hand. For reasons
of clarity the slashed entries −/− and +/+ are represented by respectively − or
+. The table lists the following features:

– Native code. The presence of this feature means that dynamics can use com-
piled function definitions i.e. binary code.

– Data objects. The presence of this feature means that data objects i.e. with-
out functions or function applications can be packed into a dynamic and
unpacked from a dynamic.

– Closures/functions. The presence of this feature means that also function
objects and closures i.e. postponed function applications can be packed into
a dynamic and unpacked from a dynamic.

– Application independence. The presence of this feature means that dynamics
can be exchanged between independent applications.

– Platform independence. The presence of this feature means that a dynamic
has a platform independent representation. This also applies to the repre-
sentation of (compiled) function definitions it uses.

– Network. The presence of this feature means that a dynamic can be ex-
changed between different machines.

– Lazy I/O. The presence of this feature means that a dynamic can be retrieved
in pieces when evaluation requires it. Only languages with a run-time mech-
anism to postpone evaluation can implement this.

Objective Caml restricts dynamic I/O on closures/functions to one particular
application provided that it is not recompiled. The Mercury implementation is
even more restrictive: it does not support I/O on closures/functions. All other
languages support dynamic I/O for closures/functions.

The persistent programming languages Persistent Haskell, Napier88 and Sta-
ple do not address the issue of exporting and importing of dynamics between
different so called persistent stores. As a consequence the mobility of a dynamic
is significantly reduced.

Although the Clean implementation is not yet platform independent, dynam-
ics can be exchanged among different Windows-networked machines. The Mozart
programming system offers the language Oz, which supports platform indepen-
dent dynamics and network dynamics because it runs within a web-browser.
However, currently the Oz-language is being interpreted.



Currently only Clean supports lazy dynamic I/O. In non-lazy functional lan-
guage there is no mechanism to postpone evaluation which makes it impossible
to implement lazy I/O in these languages.

9 Conclusions and future work

In this paper we have introduced dynamic I/O in the context of the compiled lazy
functional language Clean. We have presented the most interesting aspects of the
implementation by means of illustrative examples. Our implementation preserves
the semantics of the language and in particular laziness and sharing. Acceptable
efficiency is one of the main requirements for the design and implementation
work and has indeed been realized. The resulting system described in this paper
hides its complexity by offering a user-friendly interface. It allows the user to
view dynamics as typed files. The resulting system is as far as we know unique
in the world.

Dynamic I/O already has some interesting applications. A few examples: our
group is working on visualizing and parsing of dynamics using the generic ex-
tension of Clean, extendible user-interfaces are created using dynamics, a typed
shell which uses dynamics as executables has been created as a first step towards
a functional operating system and a Hungarian research group uses dynamics to
implement proof carrying code.

The basic implementation of dynamic I/O is nearly complete. However, a lot
of work still needs to be done:

– Increase of performance. The administration required to add function defini-
tions to a running application is quite large. By sharing parts of repositories
e.g. the standard environment of Clean between dynamics, a considerable
increase in performance can be realized.

– Language support. Several language features are not yet supported. These
features include overloading, uniqueness typing, and abstract data types.
Especially interesting from the dynamic I/O perspective are unique dynamics
which would permit destructive updates of dynamics on disk.

– Conversion functions. The rather restrictive definition of type equivalence
may result in problems when the required type definition and the offered
type definition only differ slightly. For example, if a demanded Colour-type
is defined as a subset of the offered Colour-type, then it would be useful to
have a programmer defined conversion function from the offered type to the
demanded type. Generics in [2] could help here.

– Network dynamics. In order to realize network dynamics both platform inde-
pendence and the port of the implementation to other platforms are required.

– Garbage collection of dynamically added function definitions. This is a gen-
eralization of heap-based garbage-collection as used in functional languages.
Traditionally only the heap area varies in size at run-time. Dynamic I/O
makes also the code/data-areas grow and shrink. To prevent unnecessary
run-time errors due to the memory usage of unneeded function definitions,
garbage collection is also needed for function definitions.
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