
Towards a Strongly Typed
Functional Operating System?

Arjen van Weelden and Rinus Plasmeijer

Computer Science Institute
University of Nijmegen

Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
arjenw@cs.kun.nl, rinus@cs.kun.nl

Abstract. In this paper, we present Famke. It is a prototype imple-
mentation of a strongly typed operating system written in Clean. Famke
enables the creation and management of independent distributed Clean
processes on a network of workstations. It uses Clean’s dynamic type
system and its dynamic linker to communicate values of any type, e.g.
data, closures, and functions (i.e. compiled code), between running ap-
plications in a type safe way. Mobile processes can be implemented using
Famke’s ability to communicate functions. We have built an interactive
shell on top of Famke that enables user interaction. The shell uses a
functional-style command language that allows construction of new pro-
cesses, and it type checks the command line before executing it. Famke’s
type safe run-time extensibility makes it a strongly typed operating sys-
tem that can be tailored to a given situation.

1 Introduction

Functional programming languages like Haskell [1] and Clean [2, 3] offer a very
flexible and powerful static type system. Compact, reusable, and readable pro-
grams can be written in these languages while the static type system is able to
detect many programming errors at compile time. But this works only within a
single application.

Independently developed applications often need to communicate with each
other. One would like the communication of objects to take place in a type safe
manner as well. And not only simple objects, but objects of any type, including
functions. In practice, this is not easy to realize: the compile time type informa-
tion is generally not kept inside a compiled executable, and therefore cannot be
used at run-time. In real life therefore, applications often only communicate sim-
ple data types like streams of characters, ASCII text, or use some ad-hoc defined
(binary) format. Although more and more applications use XML to communi-
cate data together with the definitions of the data types used, most programs
do not support run-time type unification, cannot use previously unknown data
types or cannot exchange functions (i.e. code) between different programs in a

? This work was supported by STW as part of project NWI.4411.

type safe way. This is mainly because the used programming language has no
support for such things.

In this paper, we present a prototype implementation of a micro kernel,
called Famke (emphfunctional micro kernel experiment). It provides explicit
non-deterministic concurrency and type safe message passing for all types to
processes written in Clean. By adding servers that provide common operating
system services, an entire strongly typed, distributed operating system can be
built on top of Famke.

Clearly, we need a powerful dynamic type system [4] for this purpose and a
way to dynamically extend a running application with new code. Fortunately,
the new Clean system offers some of the required basic facilities: it offers a hybrid
type system with static as well as dynamic typing (dynamics) [5], including run-
time support for dynamic linking [6] (currently on Microsoft Windows only).
To achieve type safe communication, Famke uses the above mentioned facilities
offered by Clean to implement lightweight threads, processes, exception handling
and type safe message passing without requiring additional language constructs
or run-time support.

It also makes use of an underlying operating system to avoid some low-
level implementation work and to integrate better with existing software (e.g.
resources such as the console and the file system). With Famke, we want to
accomplish the following objectives without changing the Clean compiler or run-
time system.

– Present an interface (API) for Clean programmers with which it is easy to
create (distributed) processes that can communicate expressions of any type
in a type safe way;

– Present an interactive shell with which it is easy to manage, apply and com-
bine (distributed) processes, and even construct new processes interactively.
The shell should type check the command line before executing it in order
to catch errors early;

– Achieve a modular design using an extensible micro kernel approach;
– Achieve a reliable system by using static types where possible and, if static

checking cannot be done (e.g. between different programs), dynamic type
checks;

– Achieve a system that is easy to port to another operating system (if the
Clean system supports it).

We will introduce the static/dynamic hybrid type system of Clean in section
2. Sections 3 and 4 present the micro kernel of Famke, which provides cooperative
thread scheduling, exception handling, and type safe communication. It also
provides an interface to the preemptively scheduled processes of the underlying
operating system. These sections are very technical, but necessary to understand
the interesting sections that follow. On top of this micro kernel an interactive
shell has been implemented, which we describe in section 5. During these sections
the crucial role of dynamics will become apparent. Related work is discussed in
section 6 and we conclude and mention future research in section 7.

2 Dynamics in Clean

Clean has recently been extended with a polymorphic dynamic type system [4–6]
in addition to its static type system. Here, we will give a small introduction to
dynamics in Clean. A dynamic is a value of type Dynamic which contains a value
as well as a representation of the type of that value.

dynamic 42 :: Int1

Dynamics can be formed (i.e. lifted from the static to the dynamic type sys-
tem) using the keyword dynamic in combination with the value and an optional
type (otherwise the compiler will infer the type), separated by a double colon.

:: Maybe a = Nothing | Just a2

matchInt :: Dynamic -> Maybe Int

matchInt (x :: Int) = Just x

matchInt other = Nothing

Values of type Dynamic can be matched in function alternatives and case
patterns to bring them from the dynamic back into the static type system. Such
pattern matches consist of an optional value pattern and a type pattern. In the
example above, matchInt returns Just the value contained inside the dynamic
if it has type Int; and Nothing if it has any other type. The compiler translates
type pattern matches into run-time type unifications. If the unification fails, the
next function alternative is tried, as in a common pattern match.

dynamicApply :: Dynamic Dynamic -> Dynamic3

dynamicApply (f :: a -> b) (x :: a) = dynamic f x :: b

dynamicApply _ _ = dynamic "Error: cannot apply"

A type pattern can contain type variables which, if the run-time unification
is successful, are bound to the offered type. In the example above, dynamicApply
tests if the type of the function f inside its first argument can be unified with
the type of the value x inside the second argument. If this is the case then
dynamicApply can safely apply f to x. The result of this application has type
b. At compile time it is generally unknown what this type b will be. The result
can be wrapped into a dynamic (and only a dynamic) again, because the type
variable b will be instantiated by the run-time unification.

matchDynamic :: Dynamic -> Maybe t | TC t4

matchDynamic (x :: t^) = Just x

matchDynamic other = Nothing

Type variables in dynamic patterns can also relate to a type variable in the
static type of a function. Such functions are called type dependent functions. A
1 Numeric literals are not overloaded in Clean, hence 42 has type Int in-

stead of Haskell’s (Num a) => a.
2 A ::, instead of the data keyword of Haskell, precedes a type definition in Clean.
3 Function types in Clean separate arguments by white space instead of ->.
4 Clean denotes overloading in a class K as: a | K a, whereas Haskell uses (K a) => a.

carrot (^) behind a variable in a pattern associates it with the type variable with
the same name in the static type of the function. The static type variable then
becomes overloaded in the predefined TC (type code) class [5]. In the example
above, the static type t will be determined by the static context in which it
is used, and will impose a restriction on the actual type that is accepted at
run-time by matchDynamic. It yields Just the value inside the dynamic (if the
dynamic contains a value of the required context dependent type) or Nothing
(if it does not).

The new dynamic run-time system of Clean [6] supports writing dynamics to
disk and reading them in again, possibly in another program or during another
execution of the same program.

writeDynamic :: String Dynamic *World -> (Bool, *World)5

readDynamic :: String *World -> (Bool, Dynamic, *World)

The dynamic will be read in lazily after a successful run-time unification
(triggered by a pattern match on the dynamic). The amount of data and code
that the dynamic linker will link in, is therefore determined by the amount of
evaluation of the value inside the dynamic. Dynamics written by a program can
be safely read by any other program, providing a form of persistence and a
rudimentary means of communication.

The ability of Clean, as well as other functional languages, to construct new
functions (e.g. currying and higher-order functions) in combination with Clean’s
new support for run-time linking, enables us to extend a running application
with new code that can be type checked after which it is guaranteed to fit.

3 Threads in Famke

Here we show how a programmer can construct concurrent programs in Clean,
using Famke’s thread management and exception handling primitives.

Currently, Clean offers only very limited library support for process manage-
ment and communication.

Old versions of Concurrent Clean [7] did offer sophisticated support for paral-
lel evaluation and lightweight processes, but no support for exception handling.
Concurrent Clean was targeted at deterministic, implicit concurrency, but we
want to build a system for distributed, non-deterministic, explicit concurrency.

Porting Concurrent Clean to Microsoft Windows is a lot of work and still
would not give us exactly what we want. Although Microsoft Windows offers
threads to enable multi-tasking within a single process, there is no run-time
support for making use of these preemptive threads in Clean. We could emu-
late threads using the preemptive processes that Microsoft Windows provides
5 The * in front of World is a uniqueness attribute. It indi-

cates that the (state of the) world will be passed around in a unique/single-
threaded way. Clean’s type checker allows destructive updates, but reject shar-
ing, of such unique objects. Clean’s World type corresponds to the hid-
den state of Haskell’s IO monad.

by multiple incarnations of the same Clean program, but this would make the
threads unacceptably heavyweight, and it would prevent them from sharing the
Clean heap, and we still would not have exception handling.

Therefore, Famke does her own scheduling of threads in order to keep them
lightweight and to provide exception handling.

3.1 Thread Implementation

In order to implement cooperative threads we need a way to suspend running
computations and to resume them later. Wand [8] shows that this can be done
using continuations and the call/CC construct offered by Scheme and other func-
tional programming languages. We copy this approach using first class continu-
ations in Clean. Because Clean has no call/CC construction, we have to write
the continuation passing explicitly. Our approach closely resembles Claessen’s
concurrency monad [9], but our primitives operate directly on the kernel state
using Clean’s uniqueness typing, and we have extended the implementation with
easily extendable exception handling (see section 3.2).

:: Thread a :== (a -> KernelOp) -> KernelOp6

:: KernelOp :== Kernel -> Kernel

threadExample :: Thread a

threadExample = \cont kernel -> cont x kernel‘

where

x = ... //7 calculate argument for cont

kernel‘ = ...kernel... // operate on the kernel state

A function of the type Thread, such as the example function above, gets the
tail of a computation (named cont; of type a -> KernelOp) as its argument
and combines that with a new computation step, which calculates the argument
(named x) for the tail computation, to form a new function (of type KernelOp).
This function returns, when evaluated on a kernel state (named kernel; of type
Kernel), a new kernel state.

:: ThreadId // abstract thread id

:: *Kernel8 = {currentId :: ThreadId, newId :: ThreadId,

ready :: [ThreadState], world :: *World}

:: ThreadState = {thrId :: ThreadId, thrCont :: KernelOp}

:: Void = Void // written more elegantly as () in Haskell

The kernel state (of type Kernel) is a record that contains the information
required to do the scheduling of the threads. It contains information like the
6 Clean uses :== to indicate a type synonym, whereas Haskell uses the type keyword.
7 This is a single line comment in Clean, Haskell uses --
8 Record types in Clean are surrounded by { and }. The * before Kernel indi-

cates that the record must always be unique. Therefore, the * can then be omit-
ted in the rest of the code.

current running thread (named currentId), the threads that are ready to be
scheduled (in the ready list), and the world state which is provided by the Clean
run-time system. Clean’s uniqueness type system makes these types a little more
complicated, but we will not show this in the examples in order to keep them
readable.

newThread :: (Thread a) -> Thread ThreadId

newThread thread = \cont k=:{newId, ready}9 ->

cont newId {k & newId = inc newId, ready = [threadState:ready]}10

where

threadState = {thrId = newId, thrCont = thread (_ k -> k)}

threadId :: Thread ThreadId

threadId = \cont k=:{currentId} -> cont currentId k

The newThread function starts the given thread concurrently with the other
threads. Threads are evaluated for their effect on the kernel and the world state.
They therefore do not return a result, hence the polymorphically parameterized
Thread a type. It relieves our system from the additional complexity of return-
ing the result to the parent thread. The communication primitives that will be
introduced later enable programmers to extend the newThread primitive to de-
liver a result to the parent. Threads can obtain their thread identification with
threadId.

Scheduling of the threads is done cooperatively. This means that threads must
occasionally allow rescheduling using yield, and should not run endless tight
loops. The schedule function then evaluates the next ready thread. StartFamke
can be used like the standard Clean Start function to start the evaluation of
the main thread.

yield :: KernelOp Kernel -> Kernel

yield cont k=:{currentId, ready} = {k & ready = ready ++ [threadState]}

where

threadState = {thrId = currentId, thrCont = cont}

schedule :: Kernel -> Kernel

schedule k=:{ready = []} = k // nothing to schedule

schedule k=:{ready = [{thrId, thrCont}:tail]} =

let k‘ = {k & ready = tail, currentId = thrId}

k‘‘ = thrCont k‘ // evaluate the thread until it yields

in schedule k‘‘

StartFamke :: (Thread a) *World -> *World

StartFamke mainThread world = (schedule kernel).world

where

firstId = ... // first thread id

9 r=:{f} denotes the (lazy) selection of the field f in the record r. r=:{f = v} de-
notes the pattern match of the field f on the value v.

10 {r & f = v} denotes a new record value that is equal to r ex-
cept for the field f, which is equal to v.

kernel = {currentId = firstId, newId = inc firstId,

ready = [threadState], world = world}

threadState = {thrId = firstId, thrCont = mainThread (_ k -> k)}

The thread that is currently being evaluated returns directly to the scheduler
whenever it performs a yield action, because yield does not evaluate the tail
of the computation. Instead, it stores the continuation at the back of the ready
queue (to achieve round-robin scheduling) and returns the current kernel state.
The scheduler then uses this new kernel state to evaluate the next ready thread.

Programming threads using a continuation style is cumbersome, because one
has to carry the continuation along and one has to perform an explicit yield often.
Therefore, we added thread-combinators resembling a more common monadic
programming style. Our return, >>= and >> functions resemble the monadic
return, >>= and >> functions of Haskell11. Whenever a running thread performs
an atomic action, such as a return, control is voluntarily given to the scheduler
using yield.

return :: a -> Thread a

return x = \cont k -> yield (cont x) k

(>>=) :: (Thread a) (a -> Thread b) -> Thread b

(>>=) l r = \cont k -> l (\x -> r x cont) k

(>>) l r = l >>= _ -> r

combinatorExample = newThread (print [’h’, ’e’, ’l’, ’l’, ’o’]) >>

print [’w’, ’o’, ’r’, ’l’, ’d’]

where

print [] = return Void

print [c:cs] = printChar c >> print cs

The combinatorExample above starts a thread that prints ”hello” concur-
rent with the main thread that prints ”world”. It assumes a low-level print
routine printChar that prints a single character. The output of both threads is
interleaved by the scheduler, and is printed as ”hweolrllod”.

3.2 Exceptions and Signals

Thread operations (e.g. newThread) may fail because of external conditions such
as the behavior of other threads or operating system errors. Robust programs
quickly become cluttered with lots of error checking code. An elegant solution
for this kind of problem is the use of exception handling.

There is no exception handling mechanism in Clean, but our thread contin-
uations can easily be extended to handle exceptions. Because of this, exceptions
can only be thrown or caught by a thread. This is analogous to Haskell’s ioError
and catch functions, with which exceptions can only be caught in the IO monad.
11 Unfortunately, Clean does not support Haskell’s do-notation for monads, which

would make the code even more readable.

In contrast to Haskell exceptions, we do not want to limit the set of exceptions
to system defined exceptions and strings, but instead allow any value. Exceptions
are therefore implemented using dynamics. This makes it possible to store any
value in an exception and to easily extend the set of exceptions at compile-time
or even at run-time. To provide this kind of exception handling, we extend the
Thread type with a continuation argument for the case that an exception is
thrown.

:: Thread a :== (SucCnt a) -> ExcCnt -> KernelOp

:: SucCnt a :== a -> ExcCnt -> KernelOp

:: ExcCnt :== Exception -> KernelOp

:: Exception :== Dynamic

throw :: e -> Thread a | TC e

throw e = \sc ec k -> ec (dynamic e :: e^) k

rethrow :: Exception -> Thread a

rethrow exception = \sc ec k -> ec exception k

try :: (Thread a) (Exception -> Thread a) -> Thread a

try thread catcher =

\sc ec k -> thread (\x _ -> sc x ec) (\e -> catcher e sc ec) k

The throw function wraps a value in a dynamic (hence the TC context re-
striction) and throws it to the enclosing try clause by evaluating the exception
continuation (ec). rethrow can be used to throw an exception without wrapping
it in a dynamic again. The try function catches exceptions that occur during
the evaluation of its first argument (thread) and feeds it to its second argument
(catcher). Because any value can be thrown, exception handlers must match
against the type of the exception using dynamic type pattern matching.

The kernel provides an outermost exception handler (not shown here) that
aborts the thread when an exception remains uncaught. This exception handler
informs the programmer that an exception was not caught by any of the handlers
and shows the type of the occurring exception.

return :: a -> Thread a

return x = \sc ec k -> yield (sc x ec) k

(>>=) :: (Thread a) (a -> Thread b) -> Thread b

(>>=) l r = \sc ec k -> l (\x -> r x sc) ec k

The addition of an exception continuation to the thread type also requires
small changes in the implementation of the return and bind functions. Note
how the return and throw functions complement each other: return evaluates
the success continuation while throw evaluates the exception continuation. This
implementation of exception handling is relatively cheap, because there is no
need to test if an exception occurred at every bind or return. The only overhead
caused by our exception handling mechanism is the need to carry the exception
continuation along.

:: ArithErrors = DivByZero | Overflow

exceptionExample = try (divide 42 0) handler

divide x 0 = throw DivByZero

divide x y = return (x / y)

handler (DivByZero :: ArithErrors) = return 0 // or any other value

handler other = rethrow other

The divide function in the example throws the value DivByZero as an excep-
tion when the programmer tries to divide by zero. Exceptions caught in the body
of the try clause are handled by handler, which returns zero on a DivByZero
exception. Caught exceptions of any other type are thrown again outside the try,
using rethrow.

In a distributed or concurrent setting, there is also a need for throwing and
catching exceptions between different threads. We call this kind of inter-thread
exceptions signals. Signals allow threads to throw kill requests to other threads.
Our approach to signals, or asynchronous exceptions as they are also called,
follows the semantics described by Marlow et. al. in an extension of Concurrent
Haskell [11]. We summarize our interface for signals below.

throwTo :: ThreadId e -> Thread Void | TC e

signalsOn :: (Thread a) -> Thread a

signalsOff :: (Thread a) -> Thread a

Signals are transferred from one thread to the other by the scheduler. A signal
becomes an exception again when it arrives at the designated thread, and can
therefore be caught in the same way as other exceptions. To prevent interruption
by signals, threads can enclose operations in a signalsOff clause, during which
signals are queued until they can interrupt. Regardless of any nesting, signalsOn
always means interruptible and signalsOff always means non-interruptible. It
is, therefore, always clear whether program code can or cannot be interrupted.
This allows easy composition and nesting of program fragments that use these
functions. When a signal is caught, control goes to the exception handler and
the interruptible state will be restored to the state before entering the try.

The try construction allows elegant error handling. Unfortunately, there is
no automated support for identifying the exceptions that a function may throw.
This is partly because exception handling is written in Clean and not built in the
language/compiler, and partly because exceptions are wrapped in dynamics and
can therefore not be expressed in the type of a function. Furthermore, exceptions
of any type can be thrown by any thread, which makes it hard to be sure that
all (relevant) exceptions are caught by the programmer. But the same can be
said for an implementation that uses user defined strings, in which non-matching
strings are also not detected at compile-time.

4 Processes in Famke

In this section we will show how a programmer can execute groups of threads
using processes on multiple workstations, to construct distributed programs in
Clean.

Famke uses Microsoft Windows processes to provide preemptive task switch-
ing between groups of threads running inside different processes. Once processes
have been created on one or more computers, threads can be started in any one
of them. First we introduce Famke’s message passing primitives for communica-
tion between threads and processes. The dynamic linker plays an essential role
in getting the code of a thread from one process to another.

4.1 Process and Thread Communication

Elegant ways for type-safe communication between threads are Concurrent Has-
kell’s M-Vars [10] and Concurrent Clean’s lazy graph copying [7].

Unfortunately, M-Vars do not scale very well to a distributed setting because
of two problems, described by Stolz and Huch in [12]. The first problem is that
M-Vars require distributed garbage collection because they are first class objects,
which is hard in a distributed or mobile setting. The second problem is that the
location of the M-Var is generally unknown, which complicates reasoning about
them in the context of failing or moving processes. Automatic lazy graph copying
allows processes to work on objects that are distributed over multiple (remote)
heaps, and suffers from the same two problems.

Distributed Haskell [13, ?] solves the problem by implementing an asyn-
chronous message passing system using ports. Famke uses the same kind of
ports. Ports in Famke are channels that vanish as soon as they are closed by
a thread, or when the process containing the creating thread dies. Accessing a
closed port results in an exception. Using ports as the means of communication,
it is always clear where a port resides (at the process of the creating thread)
and when it is closed (explicitly or because the process died). In contrast with
Distributed Haskell, we do not limit ports to a single reader (which could be
checked at compile-time using Clean’s uniqueness typing). The single reader re-
striction also implies that the port vanishes when the reader vanishes but we
find it too restrictive in practice.

:: PortId msg // abstract port id

:: PortExceptions = UnregisteredPort | InvalidMessageAtPort | ...

newPort :: Thread (PortId msg) | TC msg

closePort :: (PortId msg) -> Thread Void | TC msg

writePort :: (PortId msg) msg -> Thread Void | TC msg

writePort port m = windowsSend port (dynamicToString (dynamic m :: msg^))

readPort :: (PortId msg) -> Thread msg | TC msg

readPort port = windowsReceive port >>= \maybe ->

case maybe of

Just s -> case stringToDynamic s of

(True, (m :: msg^)) -> return m

other -> throw InvalidMessageAtPort

Nothing -> readPort port // make it appear blocking

registerPort :: (PortId msg) String -> Thread Void | TC msg

lookupPort :: String -> Thread (PortId msg) | TC msg

dynamicToString :: Dynamic -> String

stringToDynamic :: String -> (Bool, Dynamic)

All primitives on ports operate on typed messages. The newPort function
creates a new port and closePort removes a port. writePort and readPort
can be used to send and receive messages. The dynamic run-time system is used
to convert the messages to and from a dynamic. Because we do not want to read
and write files each time we want to send a message to someone, we will use the
low-level dynamicToString and stringToDynamic functions from the dynamic
run-time system library. These functions are similar to Haskell’s show and read,
except that they can (de)serialize functions and closures. They should be handled
with care, because they allow you to distinguish between objects that should be
indistinguishable (e.g. between a closure and its value). The actual sending and
receiving of these strings is done via simple message (string) passing primitives
of the underlying operating system. The registerPort function associates a
unique name with a port, by which the port can be looked up using lookupPort.

Although Distributed Haskell and Famke both use ports, our system is ca-
pable of sending and receiving functions (and therefore also closures) using
Clean’s dynamic linker. The dynamic type system also allows programs to re-
ceive, through ports of type (PortId Dynamic), previously unknown data struc-
tures, which can be used by polymorphic functions or functions that work on
dynamics such as the dynamicApply functions in section 2. An asynchronous
message passing system, such as presented here, allows programmers to build
other communication and synchronization methods (e.g. remote procedure calls,
semaphores and channels).

Here is a skeleton example of a database server that uses a port to receive
functions from clients and applies them to the database.

:: DBase = ... // list of records or something like that

server :: Thread Void

server = openPort >>= \port ->

registerPort port "MyDBase" >>

handleRequests emptyDBase

where

emptyDBase = ... // create new data base

handleRequests db = readPort port >>= \f ->

let db‘ = f db in // apply function to data base

handleRequests db‘

client :: Thread Void

client = lookupPort "MyDBase" >>= \port ->

writePort port mutateDatabase

where

mutateDatabase :: DBase -> DBase

mutateDatabase db = ... // change the database

The server creates, and registers, a port that receives functions of type
DBase -> DBase. Clients send functions that perform changes to the database
to the registered port. The server then waits for functions to arrive and applies
them to the database db. These functions can be safely applied to the database
because the dynamic run-time system guarantees that both the server and the
client have the same notion of the type of the database (DBase), even if they
reside in different programs. This is also an example of a running program that
is dynamically extended with new code.

4.2 Process Management

Since Microsoft Windows does the preemptive scheduling of processes, our sched-
uler does not need any knowledge about multiple processes. Instead of changing
the scheduler, we let our system automatically add an additional thread, called
the management thread, to each process when it is created. This management
thread is used to handle signals from other processes and to route them to the
designated threads. On request from threads running at other processes, it also
handles the creation of new threads inside its own process. This management
thread, in combination with the scheduler and the port implementation, form
the micro kernel that is included in each process.

:: ProcId // abstract process id

:: Location :== String

newProc :: Location -> Thread ProcId

newThreadAt :: ProcId (Thread a) -> Thread ThreadId

The newProc function creates a new process at a given location and re-
turns its process id. The creation of a new process is implemented by starting
a pre-compiled Clean executable, the loader, which becomes the new process.
The loader is a simple Clean program that starts a management thread. The
newThreadAt function starts a new thread in another process. The thread is
started inside the new process by sending it to the management thread at the
given process id via a typed port. When the management thread receives the
new thread, it starts it using the local newThread function. The dynamic linker
on the remote computer then links in the code of the new thread automatically.

Here is an example of starting a thread at a remote process and getting the
result back to the parent.

:: *Remote a = Remote (PortId a)

remote :: ProcId (Thread a) -> Thread (Remote a) | TC a

remote pid thread = newPort >>= \port ->

newThreadAt pid (thread >>= writePort port) >>

return (Remote port)

join :: (Remote a) -> Thread a | TC a

join (Remote port) = readPort port >>= \result ->

closePort port >>

return result

The remote function creates a port to which the result of the given thread
must be sent. It then starts a child thread at the remote location pid that
calculates the result and writes it to the port, and returns the port enclosed in
a Remote node to the parent. When the parent decides that it wants the result,
it can use join to get it and to close the port.

The extension of our system with this kind of heavyweight process enables
the programmer to build distributed concurrent applications. If one wants to run
Clean programs that contain parallel algorithms on a farm of workstations, this
is a first step. However, non-trivial changes are required to the original program
to fully accomplish this. These changes include splitting the program code into
separate threads and making communication between the threads explicit. The
need for these changes is unfortunate, but our system was primarily designed for
explicit distributed programs (and eventually mobile programs), not to speedup
existing programs by running them on multiple processors.

This concludes our discussion of the micro kernel and its interface that pro-
vides support for threads (with exceptions and signals), processes and type-safe
communication of values of any type between them. Now it is time to present the
first application that makes use of these strongly typed concurrency primitives.

5 Interacting with Famke: the Shell

In this section we introduce our shell that enables programmers to construct
new (concurrent) programs interactively.

A shell provides a way to interact with an operating system, usually via a
textual command line/console interface. Normally, a shell does not provide a
complete programming language, but it does enable users to start pre-compiled
programs. Although most shells provide simple ways to combine multiple pro-
grams, e.g. pipelining and concurrent execution, and support execution-flow con-
trols, e.g. if-then-else constructs, they do not provide a way to construct new
programs. Furthermore, they provide very limited error checking before execut-
ing the given command line. This is mainly because the programs mentioned at
the command line are practically untyped because they work on, and produce,
streams of characters. The intended meaning of these streams of characters varies
from one program to the other.

Our view on pre-compiled programs differs from common operating systems
in that they are dynamics that contain a typed function, and not untyped ex-
ecutables. Programs are therefore typed and our shell puts this information to

good use by actually type checking the command line before performing the spec-
ified actions. For example, it could test if a printing program (:: WordDocument
-> PostScript) matches a document (:: WordDocument).

The shell supports function application, variables, and a subset of Clean’s
constant denotations. The shell syntax closely resembles Haskell’s do-notation,
extended with operations to read and write files.

Here follow some command line examples with an explanation of how they
are handled by the shell.

> map (add 1) [1..10]

The names map and add are unbound (do not appear in the left hand side
of a let of lambda expression) in this example and our shell therefore assumes
that they are names of files (dynamics on disk). All files are supposed to contain
dynamics, which together represent a typed file system. The shell reads them
in from disk, practically extending its functionality with these functions, and
inspects the types of the dynamics. It uses the types of map (let us assume that
the file map contains the type that we expect: (a -> b) [a] -> [b]), add (let us
assume: Int Int -> Int) and the list comprehension (which has type: [Int])
to type-check the command line. If this succeeds, which it should given the types
above, the shell applies the partial application of add with the integer one to
the list of integers from one to ten, using the map function. The application of
one dynamic to another is done using the dynamicApply function from Section
2, extended with better error reporting. With the help of the dynamicApply
function, the shell constructs a new function that performs the computation map
(add 1) [1..10]. This function uses the compiled code of map, add, and the list
comprehension. Our shell is a hybrid interpreter/compiler, where the command
line is interpreted/compiled to a function that is almost as efficient as the same
function written directly in Clean and compiled to native code. Dynamics are
read in before executing the command line, so it is not possible to change the
meaning of a part of the command line by overwriting a dynamic.

> inc <- add 1; map inc [2,4..10]

Defines a variable with the name inc as the partial application of the add
function to the integer one. Then it applies the map function using the variable
inc to the list of even integers from two to ten. The dynamic linker detects that
map and add are already linked in, and reuses their code.

> inc <- add 1; map inc [’a’..’z’]

Defines the variable inc as in the previous example, but applies it, using the
map function, to the list of all the characters in the alphabet. This obviously fails
with the usual type error: Cannot unify [Int] with [Char].

> write "result" (add 1 2); x <- read "result"; x

> add 1 2 > result; x < result; x

Both the above examples do the same thing, because the < (read file) and
> (write file) shell operators can be expressed using predefined read and write
functions. The sum of one and two is written to the file with the name result.
The variable x is defined as the contents of the file with the name result, and

the final result of the command line is the contents of the variable x. In contrast
to the add and map functions, which are read from disk by the shell before type
checking and executing the command line, result is read in during the execution
of the command line.

> newThread server;

> p <- lookupPort "MyDBase"; writePort p (insertDBase MyRecord)

The first line in the example above creates a new thread that executes the
server from section 4.1. Let us assume that we have two dynamics on disk:
one with the name insertDBase containing a function that can insert a record
into a database, and one with the name MyRecord containing a record for the
database. In the second line, we get the port of the server by looking it up using
the name MyDBase. We send the function insertDBase applied to MyRecord to
the server by writing the closure to the port. This example shows how we can
interactively communicate with threads in a type safe way.

6 Related Work

There are concurrent versions of both Haskell and Clean. Concurrent Haskell
[10] offers lightweight threads in a single UNIX process and provides M-Vars as
the means of communication between threads. Concurrent Clean [7] is only avail-
able on multiprocessor Transputers and on a network of single-processor Apple
Macintosh computers. Concurrent Clean provides support for native threads
on Transputer systems. On a network of Apple computers, it ran the same
Clean program on each processor, providing a virtual multiprocessor system.
Concurrent Clean provided lazy graph copying as the primary communication
mechanism. Both concurrent systems cannot easily provide type safety between
different programs or between multiple incarnations of a single program.

Another difference between Famke and the concurrent versions of Haskell and
Clean is the choice of communication primitives. Neither lazy graph copying nor
M-Vars scale very well to a distributed setting because they require distributed
garbage collection. This issue has led to a distributed version of Concurrent
Haskell [13] that also uses ports. However, its implementation does not allow
functions or closures to be sent over ports, because it cannot serialize functions.
Support for this could be provided by a dynamic linker for Concurrent Haskell.

Both Cooper [14] and Lin [15] have extended Standard ML with threads (im-
plemented as continuations using call/CC) to form a small functional operating
system. Both systems implement the basics needed for a stand-alone operat-
ing system. However, none of them support the type-safe communication of any
value between different computers.

Erlang [16] is a functional language specifically designed for the development
of concurrent processes. It is completely dynamically typed and primarily uses
interpreted byte-code, while Famke is mostly statically typed and executes native
code generated by the Clean compiler. A simple spelling error in a token used
during communication between two processes is often not detected by Erlang’s
dynamic type system, sometimes causing deadlock.

Back et al. [17] built two prototypes of a Java operating system. Although
they show that Java’s extensibility, portable byte code and static/dynamic type
system provides a way to build an operating system where multiple Java pro-
grams can safely run concurrently, Java lacks the power of polymorphic and
higher-order functions and closures (to allow laziness) that our functional ap-
proach offers.

Haskell provides exception handling, while remaining pure and lazy. In [11]
support for asynchronous exceptions has been added to Concurrent Haskell. Our
implementation of signals closely follows their approach.

The Scheme Shell [18] integrates a shell into the programming language in
order to enable the user to use the full expressiveness of Scheme. Es [19] is a
shell that supports higher-order functions and allows the user to construct new
functions at the command line. Neither shell provides a way to read and write
typed objects from and to disk, and they cannot provide type safety because
they operate on untyped executables.

7 Conclusions and Future Work

In this paper, we presented the basics of our prototype functional operating
system called Famke. Famke is written entirely in Clean and provides lightweight
threads, exceptions and heavyweight processes, and a type safe communication
mechanism, using Clean’s dynamic type system and dynamic linking support.
Furthermore, we have built an interactive shell that type checks the command
line before executing it. With the help of these mechanisms it becomes feasible
to build distributed concurrent Clean programs running on a network. Programs
can easily be extended with new code at run-time using the dynamic run-time
system of Clean.

We can extend our kernel in a modular way by putting all extensions in
separate dynamics, which would allow us to tailor our system (at run-time) to
a given situation. Nevertheless, there remain issues that need further research.

We would like to give the programmer more information about what excep-
tions a function may throw. Unfortunately, we have not yet found a way to do
this without compromising the flexibility of our approach.

The implementation of ports given in this paper does not check if the name
is unique (when registering) or even exists (when looking up), entrusting this
responsibility upon the programmer. Fortunately, this situation will be detected
at run-time because it causes an exception at the receiving end. We intend to
repair it in a more mature implementation.

The current focus of further research on Famke is to increase the power and
usability of the shell.

References

1. S. Peyton Jones and J. Hughes et al. Report on the programming language Haskell
98. University of Yale, 1999. http://www.haskell.org/definition/

2. M. J. Plasmeijer and M. C. J. D. van Eekelen. Functional Programming and Parallel
Graph Rewriting. Addison Wesley, 1993.

3. M. van Eekelen and R. Plasmeijer. Concurrent CLEAN Language Report (version
2.0, draft). University of Nijmegen, December 2001. http://www.cs.kun.nl/˜clean.

4. M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic Typing in a Stati-
cally Typed Language. ACM Transactions on Programming Languages and Systems,
13(2):237–268, April 1991.

5. M. Pil. Dynamic Types and Type Dependent Functions. In T. Davie K. Hammond
and C. Clack, editors, Proceedings of the 10th International Workshop on the Im-
plementation of Functional Languages, volume 1595 of Lecture Notes in Computer
Science, pages 171–188. Springer-Verlag, 1998.

6. M. Vervoort and R. Plasmeijer. Lazy Dynamic Input/Output in the Lazy Func-
tional Language Clean. In R. Peña and T. Arts, editors, Proceedings of the 14th
International Workshop on the Implementation of Functional Languages, Lecture
Notes in Computer Science. Springer-Verlag, 2002.

7. E.G.J.M.H. Nocker, J.E.W. Smetsers, M.C.J.D. van Eekelen, and M.J. Plasmeijer.
Concurrent Clean. In E.H.L. Aarts, J. van Leeuwen, and M. Rem, editors, PARLE
’91: Parallel Architectures and Languages Europe, Volume II, volume 506 of Lecture
Notes in Computer Science, pages 202–219. Springer, 1991.

8. M. Wand. Continuation-Based Multiprocessing. In J. Allen, editor, Conference
Record of the 1980 LISP Conference, pages 19–28, Palo Alto, CA, 1980. The Lisp
Company.

9. K. Claessen. A Poor Man’s Concurrency Monad. Journal of Functional Program-
ming, 9, May 1999.

10. S. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In Conference
Record of POPL ’96: The 23rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 295–308, St. Petersburg Beach, Florida, 21–24
1996.

11. S. Marlow, S.L. Peyton Jones, A. Moran, and J.H. Reppy. Asynchronous Excep-
tions in Haskell. In SIGPLAN Conference on Programming Language Design and
Implementation, pages 274–285, 2001.

12. V. Stolz and F. Huch. Implementation of Port-based Distributed
Haskell, 2001. http://www-i2.informatik.rwth-aachen.de/Research/distri-
butedHaskell/ifl2001.ps.gz.

13. F. Huch and U. Norbisrath. Distributed Programming in Haskell with Ports. In M.
Mohnen and P.W.M. Koopman, editors, Implementation of Functional Languages,
12th International Workshop, IFL 2000, volume 2011 of Lecture Notes in Computer
Science, pages 107–121. Springer, September 2000.

14. E.C. Cooper and J.G. Morrisett. Adding Threads to Standard ML. Technical Re-
port CMU-CS-90-186, Pittsburgh, PA, 1990.

15. A.C. Lin. Implementing Concurrency For An ML-based Operating System. PhD
thesis, Massachusetts Institute of Technology, February 1998.

16. J. Armstrong, R. Virding, C. Wikström, and M. Williams. Concurrent Program-
ming in Erlang. Prentice-Hall, second edition, 1996.

17. G. Back, P. Wullmann, L. Stoller, W. C. Hsieh, and J. Lepreau. Java Operating
Systems: Design and Implementation. Technical Report UUCS-98-015, 6, 1998.

18. O. Shivers. A Scheme Shell. Technical Report MIT/LCS/TR-635, 1994.
19. P. Haahr and B. Rakitzis. Es: A shell with higher-order functions. In USENIX

Winter, pages 51–60, 1993.

