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Abstract. Compositional testingoncerns the testing of systems that consist of
communicating components which can also be tested in isolation. Examples are
component based testing and interoperability testing. We show that, with certain
restrictions, thdoco-test theory for conformance testing is suitable for compo-
sitional testing, in the sense that the integration of fully conformant components
is guaranteed to be correct. As a consequence, there is no need to re-test the inte-
grated system for conformance.

This result is also relevant féesting in contextsince it implies that every failure

of a system embedded in a test context can be reduced to a fault of the system
itself.

1 Introduction

In this paper we study formal testing based oniiheo-test theory. This theory works

on labeled transition systems (LTS)[11,2]. The ndowo, which stands foinput/output
conformancerefers to the implementation relation (i.e., notion of correctness) on which
the theory and the test generation algorithm have been built. A number of tools are based
on theioco theory, among which there arev [3], TESTGEN [4] and TorX [5].

Two open issues in testing theory in general, andittt®-theory in particular, are
compositional testingndtesting in contextFor instance, for the testing theory based
on Finite-State-Machines (FSM) this issue has been studiéd in [6].

Compositional testingonsiders the testing of communicating components that to-
gether form a larger system. An example is component based testing, i.e., integration
testing of components that have already been tested separately. An example from the
telecom sector is interoperability testing, i.e., testing if systems from different manu-
facturers, that should comply with a certain standard, work together; for example GSM
mobile phones. The question is what can be concluded from the individual tests of the
separate components, and what should be (re)tested on the integration or system level.
With the current theory it is unclear what the relation between the correctness of the
components and the integrated system is.
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Another scenario, with similar characteristicstésting in contextThis refers to
the situation that a tester can only access the implementation under test thrasgh a
context[[7/8(9]. The test context interfaces between the implementation under test and
the tester. As a consequence the tester can only indirectly observe and contual the
via the test context. This makes testing weaker, in the sense that there are fewer pos-
sibilities for observation and control of theT. With testing in context, the question
is whether faults in theuT can be detected by testing the compositiomuaf and test
context, and whether a failure of this composition always indicates a fault obithe
This question is the converse of compositional testing: when testing in context we wish
to detect errors in theuT — a component — by testing it in composition with the test
context, whereas in compositional testing we wish to infer correctness of the integrated
system from conformance of the individual components.

This paper studies the above mentioned compositionality propertiesofor two
operations on labeled transition systems: parallel composition and hiditig:dfhas
this compositionality property for these operations, it follows that correctness of the
parts (the components) implies correctness of the whole (the integrated system), or that
a fault in the wholeIUT and test context) implies a fault in the componeuntr. This
compositionality property is formally called a pre-congruence.

We show thaioco is a pre-congruence for parallel composition and hiding in the
absence of underspecification of input actions. One way to satisfy this condition is to
only allow specifications which aiieput enabled Another way is to make the under-
specification explicit bycompletion We show that, in particulademonic completion
is suitable for this purpose. As a final result we show how to use the original (uncom-
pleted) specifications and still satisfy the pre-congruence property. This leads to a new
implementation relation, baptizédco;; which is slightly weaker thaioco.

This paper has two main results. First we show a way to handle underspecifica-
tion of input actions when testing communicating components withidlee theory.

This idea is new for LTS testing. It is inspired hy [10] and similar work done in FSM
testing [11]. Second we establish a formal relation between the components and the
integrated system. As far as we know this result is new for both LTS testing and FSM
testing.

Overview. The next section recalls some basic concepts and definitions about transition
systems andoco. Sectior| B sets the scene and formalizes the problems of composi-
tional testing and testing in context. Sectign 4 studies the pre-congruence properties of
ioco for parallel composition and hiding. Sectiph 5 discusses underspecification, and
approaches to complete specifications with implicit underspecification. Sg¢tion 6 con-
cludes with some final remarks and an assessment of the results. For a full version of
this paper with all the proofs, we refer {0 [12].

2 Formal preliminaries

This section recalls the aspects of the theory behira that are used in this paper;
seel[1] for a more detailed exposition.



Labeled Transition SystemsA labeled transition system (LTS) description is defined

in terms of states and labeled transitions between states, where the labels indicate what
happens during the transition. Labels are taken from a globdl.séte use a special
labelr ¢ L to denote an internal action. For arbitraryC L, we useL., as a shorthand

for L U {7}. We deviate from the standard definition of labeled transition systems in
that we assume the label set of an LTS to be partitioned in an input and an output set.

Definition 1. Alabeled transition system a 5-tuple(Q, I, U, T', o) WhereQ is a non-
empty countable set agitates I C L is the countable set dhput labels U C L is the
countable set obutput labelswhich is disjoint from/; T C Q@ x (IUU U {7}) x Q
is a set of triples, théransition relationgy € @ is theinitial state

We useL as shorthand for the entire label sét¢ 1 U U); furthermore, we us@,, I,,

etc. to denote the components of an LiT.3Ve commonly write; 2 ¢’ for (¢, \, ¢') €

T'. Since the distinction between inputs and outputs is important, we sometimes use a
question mark before a label to denote input and an exclamation mark to denote output.
We denote the class of all labeled transition systems dwerdU by L7S(I,U). We
represent a labeled transition system in the standard way, by a directed, edge-labeled
graph where nodes represent states and edges represent transitions.

A state that cannot do an internal action is caktable A state that cannot do an
output or internal action is calleguiescentWe use the symbadl (¢ L) to represent
quiescence: that ip,-% p stands for the absence of any transitior> p’ with A € U,.

For an arbitraryl. C L, we useL; as a shorthand fat U {4}.

An LTS is calledstrongly responsivi it always eventually enters a quiescent state;
in other words, if it does not have any infinité.-labeled paths. For technical reasons
we restrictC7S (1, U) to strongly responsive transition systems. Systems that are not
strongly responsive may show live-locks (or develop live-locks by hiding actions). So
one can argue that it is a favorable property if a specification is strongly responsive.
However, from a practical perspective it would be nice if the constraint can be lessened.
This is probably possible, but needs further research.

A traceis a finite sequence of observable actions. The set of all traced.deil)
is denoted by_*, ranged over by, with ¢ denoting the empty sequenceslf, o5 € L*,
theno;-o5 is the concatenation ef; ando,. We use the standard notation with single
and double arrows for traceg-*2%=~, ¢ denotesy %% --- %=, ¢’, ¢ == ¢’ denotes

Teeer ) ay-...-Qn € a € a, € /
qg =5 ¢ andg ———= g denoteg = %> — ... 22, — ¢’ (Wwherea; € L,;).

We will not always distinguish between a labeled transition system and its initial
state. We will identify the procegs= (Q,I,U, T, qo) with its initial stateq,, and we
write, for examplep == ¢, instead ofyy == ¢; .

Input-output transition systems. An input-output transition systerfiOTS) is a la-
beled transition system that is completely specified for input actions. The class of input-
output transition systems with input actions/imnd output actions iy is denoted by
TOTS(I1,U) (C LTS(I,U)). Notice that we do not require IOTS'’s to be strongly re-
sponsive.

Definition 2. Aninput-output transition systep= (Q, I, U, T, qo) is a labeled transi-
tion system for which all inputs are enabled in all statég:c Q,a € I : ==



Composition of labeled transition systemsThe integration of components can be
modeled algebraically by putting the components in parallel while synchronizing their
common actions, possibly with internalizing (hiding) the synchronized actions. In pro-
cess algebra, the synchronization and internalization are typically regarded as two sep-
arate operations. The synchronization of the processeslq is denoted by || ¢. The
internalization of a label sét in proces, or hiding V' in p as it is commonly called,

is denoted byhide V' in p. Below we give the formal definition.

Definition 3. Fori = 1,2 letp; = (Q;, I;, U;, T;, p;) be a transition system.
o If Il N IQ = U1 N U2 = @ thenpl ||p2 —def <Q,I7Ua Tapl ||p2> where
Q={allelac,qcQ};

o

o [ = (11 \ Ug) U (IQ \ Ul),

o U=U;UUs.

o T'is the minimal set satisfying the following inference ruless(L.):
@t qh pE Lo Fallee *qille
G215 a5, pE L Faillge a1l g

g, etd, pn#FrEalle e

o If V C Uy, thenhide V in p; =qet (Q, 11, U; \ V, T, hide V in p;) where

o Q@ =1{hideVing |q1 € Q1};
o T'is the minimal set satisfying the following inference rules(L.):

@14}, 1 ¢V hideV ing 45 hide V in ¢}
@ ¢}, p €V EhideVing - hide Vin g

Note that these constructions are opégrtial: there are constraints on the input and
output sets. Moreover, parallel composition may give rise to an LTS that is not strongly
responsive, even if the components are. For the time being, we do not try to analyze
this but implicitly restrict ourselves to cases where the parallel compositstrongly
responsive (thus, this is another source of partiality of the construction).

In this paper we restrict ourselves to binary parallel composition. N-ary parallel
composition may be an interesting extension. One may wonder however what this
means in our input output setting, since an output action is uniquely identified by its
sender. From this perspective only the synchronization of many receivers to one sender
(broadcast) seems an interesting extension.

Proposition 1. Letp,q € LTS(I;,U;) fori = p,q, withI, N I, = U, N U, = 0, and
letV C U,.
1. If p|| ¢ is strongly responsive then|| ¢ € LTS((I, \ U,) U (I, \ Up), U, UU,);
moreoverp || ¢ € ZOTS if p,q € TOTS.
2. hide Vinp € LTS(I,,U, \ V); moreoverhide V inp € ZOTS if p € ZOTS.

Conformance. The testing scenario on whidlbco is based assumes that two things
are given: 1) An LTS constituting a specification of required behavior. And 2) an im-
plementation under test. We treat ther as a black box. In order to reason about it
we assume it can be modeled as an IOTSI(anis an object in the real world) . This



assumption is referred to as the test hypothésis [7]. We want to stress that we do not
need tchavethis model when testing the/T. We onlyassumehat the implementation
behavess an I0TS.

Given a specification and an (assumed) model of ther i, the relationi ioco
s expresses that conforms tos. Whether this holds is decided on the basis of the
suspension tracesf s: it must be the case that, after any such tracevery output
action (and also quiescence) thad capable of should be allowed accordingtd his
is formalized by defining after o (the set of states that can be reacheg after the
suspension trace), out(p) (the set of output and-actions ofp) and Straces(p) (the
suspension traces gj.

Definition 4. Letp, s € LTS(1,U), leti € ZOTS(1,U), letP € @, be aset of states
inp and leto € Lj.

1. pafter o =aqet {p' | p==71'}

2. out(p) =aet {z €U |p-=31U{d|p-2}

3. out(P) =ger J { out(p) [p € P}

4. Straces(p)=det {0 € Lj | p==}

The following defines the implementation relati@co, modulo a functionF that gen-
erates a set of test-traces from a specification. In this defirdtfodenotes the powerset
of X, for an arbitrary sekX.

Definition 5. Given a functionF : £L7S(I,U) — 2%5, we define the implementation
relationiocor C ZOTS(1,U) x LTS(I,U) as follows:

iiocor s <= Vo € F(s): out(i after o) C out(s after o)

S07 10COg1races S MEANSTo € Straces(s) : out(i after o) C out(s after o). We
useioco as an abbreviation fdbco g4,4.cs. FOr more detailed information aboidgtco
we refer to[[1].

3 Approach

In this section we want to clarify compositional testing with the formal framework pre-
sented in the previous section. The consequences for testing in context will be discussed
in the final section.

We study systems that consist of communicating components. These components
can be tested individually and while working together (in the case of testing in context
the components are theT and its test context). The behavior of such a system is de-
scribed by the parallel composition of the individual transition systems. Output actions
of one component that are in the input label set of another componesyrarieronized
resulting in a single, internal transition of the overall system. Actions of a component
that are not in the label set of another component are not synchronized, resulting in a
single observable transition of the overall system. This gives rise to the scenario de-
picted in Figurg¢ JL. The figure will be explained in the next example.



0.50,1.00 | mr%lg 29 cff coﬁ‘fe, tea
0.50,1.00 mon error drk

Scof = hide {make_coffee, make_tea, error} in Spon || Sark
icof = hide {make_coffee, make_tea, error} in iy, op || tark

Fig. 1. Architecture of coffee machine in components

3.1 Example

To illustrate compositional testing, we use two components of a coffee machine: a
“money component”’roon) that handles the inserted coins and a “drink component”
(drk) that takes care of preparing and pouring the drinks, see Higure 1.

The money componentccepts coins cE1 and 0f€0.50 as input from the envi-
ronment. After insertion of &€0.50 coin (respectivel£1 coin), the money component
orders the drink component to make tea (respectively coffee).

The drink component interfaces with the money component and the environment.

If the money component orders it to make tea (respectively coffee) it outputs tea (respec-
tively coffee) to the environment. If anything goes wrong in the drink making process,
the component gives an error signal.

The coffee machines the parallel composition of the money component and the
drink component, in which the “make coffee” command, the “make tea” command and
the “error” signal are hidden. One can think of the parallel composition as establishing
the connection between the money component and the drink component, whereas hiding
means that the communication between the components is not observable anymore;
only communication with the environment can be observed.

Models. In Figure[2 we show the behavioral specification of the money component
Smon and the drink component;,. as LTS’s. Note that the money component is un-
derspecified for theerror input label and that the drink component cannot recover
from an error state, and while in the error state it cannot produce tea or coffee. Fig-
ure[3 shows implementation models of the money componigpt,, and the drink
componentj ;. We have used transitions labeled with &s an abbreviation for all
the non-specified input actions from the alphabet of the component. The money com-
ponent has input label sek,,,, = {0.50,1.00, error}, output label sel/,,,, =
{make_coffee, make_tea, 0.50, 1.00}; specifications,,on, € LTS (Imons Umon), and
implementationi,,.o,, € ZOTS(Imon, Umon)- Lare = {make_coffee, make_tea} and
Ui = {coffee, tea, error} are the input and output label set respectiveleyangd €
LTS (Ldrk, Udrk) s tark € ZOTS(Lark, Udrkc)-

In the implementations of the components we choose to improve upon the specifica-
tion, by adding functionality. This is possible sinzeco allows partial specifications.



Smon Sdrk
Imake \ Imake
coffee /’\ tea

21.00 ?0.50 Icoffed ngfggg ?rtré%ke ltea
? & / \ ?make coffee
' [?nrﬁgﬁg ?gfa ?make tea

?make
coffee

money component specification

drink component specification

Fig. 2. Specification of money and drink components as LTS’s

Implementers are free to make use of the underspecification. The extra functionality
of i,,., cOMpared to its specificatiot,,,, is that it can handle error signals: it reacts
by returning€1.00.4 4,4, is also changed with respect to its specificatign,: making
tea never produces an error signal. Since implementations are input enabled, we have
chosen that all non specified inputs are ignored, i.e., the system remains in the same
state.

We havei,,,, 10co S0, andigy ioco sgr. The question now is whether the
integrated implementation, as given hy; in Figure[1, is alsdoco correct with re-
spect to the integrated specificatien;. We discuss this in secti¢n 4, to illustrate the
compositionality properties discussed there.

Z'mon idrk \

Imake

20. 50 tea 7make ?2make

Icoffe /coffee tea ltea

?1.00

11.00 ’?error

(/ Ierror
?make ?make
coffee tea

L/?

money component implementation drink component implementation

Fig. 3. Implementation of the money and drink components as IOTS'’s



3.2 Compositional testing

We now paraphrase the question of compositional testing, discussed in the introduction,
as follows: “Given that the componemntsndq have been tested to beco-correct (ac-
cording to their respective specifications), may we conclude that their integration is
alsoioco-correct (according to the integrated specification)?” If the component speci-
fications are LTS’s, the component implementations are modeled by I0TS’s, and their
integration by parallel composition followed by hiding, this boils down to the following
questions in our formal framework (wheige ZO7S (I, Uy) andsy € LTSIy, Uy)

fork = 1,2, WithIl Nlhb=U;NU; = @)

Q1: Giveniy ioco s for k = 1,2, is it the case that || iz ioco s1 || s2?
Q2: Giveni; ioco sy, is it the case thathiide V in i;) ioco (hide V in s;) for
arbitraryV C U;?

If the answer to both questions is “yes”, then we may concludeidiwat is suitable for
compositional testing as stated in the following corollary.

Conjecture 1.If i, € TOTS(I,Ux) andsy € LTSIy, Uy) for k = 1,2 with I; N
Ir,=U;NUy = ¢ andV = (11 N Ug) U (Ul n IQ), then

i1 i0co $1 A ioco sy = (hide V in 4y || i2) ioco (hide V in s || s2) .

We study the above pre-congruence questions in the next section. We will show that
the answer to Q1 and Q2 in generahiz Instead, we can show that the answer to Q1
and Q2 isyesif s; ands, are completely specified.

4 Compositionality for synchronization and hiding

In this section we address the questions Q1 and Q2 formulated above ($ection 3.2),
using the coffee machine example to illustrate our results.

4.1 Synchronization

The property that we investigate for parallel compositionifiswe have two correct
component implementations accordingit@o, thenthe implementation remains cor-
rect after synchronizing the components. It turns out that in general this property does
not hold, as we show in the following example.

Example 1.Regard the LTS’s in figurie] 4. On the left hand side we show the specifica-
tions and on the right hand side the corresponding implementations. The models have
the following label setss; € LTS({z},0),i1 € ZOTS({x},0),s2 € LTS, {z})
andiy € ZOTS(0, {x}). The suspension traces of are given bys* U §*?zé* and
the suspension traces ef are given by{e, lz}Ulzlzd*. We havei; ioco s; and
19 10CO $9.

After we take the parallel composition of the two specifications wesgdtss,
see figuré 4 (the corresponding implementatiofy i§i>). We now see the following:
out(iy || ixafter!z) = {lz} € out(sy || s2after!z) = {6}; this means that the parallel
composition of the implementations is riokco-correct:i; || iz iofo s || s2.



S1 52 S1 || 52 i1 i9 i1 || 19
\I?l' lz \I!l’ 7z lx lz
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Fig. 4. Counter example to compositionality for parallel composition; see Exdmple 1

Analysis shows that; ioco s, becausdoco allows underspecification of input
actions. However, the semantics of the parallel composition operator does not take un-
derspecification of input actions into account. Althoughcan output a second, it
cannot do so i3, || s2, because; cannot input the second

It turns out that if we forbid implicit underspecification, i.e., if the specification
explicitly prescribes for any possible input what the allowed responses are, then we do
not have this problem. In fact in that case we have the desired compositionality property.
This property is expressed in the following theorem. For a proofisée [12].

Theorem 1. Let $1,11 € IOTS(Il,Ul), So,t0 € IOTS(IQ,UQ), withl; N Iy =
U1 N U2 = @
i1 i0co s1 Aig i0cOo s2 = i1 || i2 i0co 51 || 52

Our running example (Sectign B.1) shows the same problem illustrated in exam-
ple[d. Although the implementations of the money component and the drink component
areioco correct with respect to their specifications, it turns out that the parallel com-
position ofi,, ., andi . is not:

out (imon || tari after 71.00-!make_coffee) = {lcoffee,error}
out(Smon || Sarr after 71.00-!make_coffee) = {!coffee}

Note that the internal signals are still visible as output actions. To turn them into
internal actions is the task of théding operator, discussed below.

4.2 Hiding

The property that we investigate for hiding is the followirigwe have a correct im-
plementation according tmco, thenthe implementation remains correct after hiding
(some of the) output actions. It turns out that, as for synchronization, in general this
property does not hold.

Example 2.Consider the implementationand specificatiors in Figure[$, both with
input set{a} and output sefx, y}. The suspension traces oare{e}U?ad*Ulzd*. We
see thai ioco s.

We get the specificatiohide {z} in s, and implementatiothide {z} in i after
hiding the output action:. After the inputa we get: out(hide {z} in i after a) =
{6,y} € out(hide {z} in s after a) = {§}; in other words théoco relation does not
hold: hide {z} in ¢ ioto hide {z} in s.
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Fig. 5. Counter-example to compositionality for hiding; see Exarpple 2

An analysis of the above example shows thatas underspecified, in the sense that
it fails to prescribe how an implementation should behave after the tree The
proposed implementatioh uses the implementation freedom by having an unspec-
ified y-output after!z?a. However, if x becomes unobservable due to hiding, then
the tracedz?a and?a collapse and become indistinguishablehiide {z} in s and
hide {z} in i they both masquerade as the tr&ee Now hide {z} in s appearsto
specify that aftef’a, only quiescenced] is allowed; howeverhide {z} in ¢ still has

this unspecified;-output. In other words, hiding creates confusion about what part of
the system is underspecified.

It follows that if we rule out underspecification, i.e., we limit ourselves to specifi-
cations that are I0TS’s then this problem disappears. In fact, in that case we do have
the desired congruence property. This is stated in the following theorem. For a proof
seel[12].

Theorem 2. If i, s € ZOTS(I,U) withV C U, then:

iioco s = (hide Vini) ioco (hideV in s)

5 Demonic completion

We have shown in the previous section thato is a pre-congruence for parallel com-
position and hiding when restricted T¥W7S x ZO7TS. However, in the original the-

ory [1] ioco C ZOTS x LTS, the specifications are LTS’s. The intuition behind this

is thatioco allows underspecification of input actions. In this section we present a
function that transforms LTS’s into IOTS’s in a way that complies with this notion of
underspecification. We will show that this leads to a new implementation relation that
is slightly weaker thatioco.

Underspecification comes in two flavors: underspecification of input actions and
underspecification of output actions. Underspecification of output actions is always ex-
plicit; in an LTS it is represented by a choice between several output actions. The intu-
ition behind this is that we do not know or care which of the output actions is imple-
mented, as long as at least one is. Underspecification of input actions is always implicit;
it is represented by absence of the respective input action in the LTS. The intuition be-
hind underspecification of input actions is that after an unspecified input action we do



not know or care what the behavior of the specified system is. This means that in an
underspecified state — i.e., a state reached after an unspecified input action — every
action from the label set is correct, including quiescence. Following [13] we call this
kind of behaviorchaotic

In translating LTS’s to IOTS’s, we propose to model underspecification of input ac-
tions epr|C|tIy Firstly, we model chaotlc behavior through a stgtevith the property:
VA eU: qy :>qx andvi € I : gy RN ¢ (Wherey stands for chaos). Secondly,
we add for every stable stajgof a given LTS) that is underspecified for an inpyta
transition(g, a, g ). This turns the LTS into an IOTS. After [L0] we call this procedure
demoniccompletion — as opposed tangelic completion, where unspecified inputs
are discarded (modeled by adding self-loop transitions). Note that demonic completion
results in an IOTS that is not strongly convergent. However the constraint of strong
convergence only holds for LTS’s.

Definition 6.
= LTS(I,U) — ITOTS(1,U) is defined bYQ, I, U, T, qo) — (Q',1,U,T’, qo),
where

Ql = Q ) {qx7CIQ7CIA}» where dx,402,9A g Q

=TU{(q,a,qy) | g € Qa el ,q—F ,q—+}
U{(axs 7:902)s (0 T aa) } U{(ga, A ax) | A € LY U{(ga, A\ qy) | A € T}

specification (LTS) demonically completed specification (IOTS)

Smon
Imake Imake
coffe tea

?1.00 ?0.50

YN

q1 q2
chaotic IOTS
dx

I1yvU 1

q90 qA

Fig. 6. Demonic completion of an LTS specification

Example 3.To illustrate the demonic completion of implicit underspecification, we use
the money component of sectipn3.1. The LTS specification of the money component
is given in the top left corner of Figufg 6. The IOTS that models our chaos property



is given in the bottom left corner. For every stable state of the specification that is
underspecified for an input action, the functiBradds a transition with that input action

to stateg, . For example, every state is underspecified for input actieor, so we add

a transition from every state tg, for error. The stateg; andg, are underspecified for
0.50 and1.00, so we add transitions for these inputs frorandg: to ¢,.. The resulting
demonically completed specification is given on the right hand side of Higure 6.

An important property of demonic completion is that it only adds transitions from
stablestates with underspecified inputs in the original LTg,foMoreover, it does not
delete states or transitions. Furthermore, the chaotic IOTS acts as a kind of sink: once
one of the added stateg ( ¢ Or g4) has been reached, they will never be left anymore.

Proposition 2. Lets € LTS(I,U).Vo € L%, ¢ € Qs : s=¢ & =(s) = ¢

—y

We use the notationibco o =” to denote that before applyingco, the LTS spec-
ification is transformed to an IOTS ly; i.e.,i(ioco o =)s < i ioco Z(s). This rela-
tion is slightly weaker thatioco. This means that previously conformant implementa-
tions are still conformant, but it might be that previously non-allowed implementations
are allowed with this new notion of conformance.

Theorem 3. ioco C iocoo &

Note that the opposite is not true i.e(iocoo =) s i ioco s (as the counter-
examples of sectidn 4 show). Furthermore this property is a consequence of our choice
of the demonic completion function. Other forms of completion, such as angelic com-
pletion, result in variants dibco which are incomparable to the original relation.

Testing. The testing scenario is now such that an integrated system can be tested by
comparing the individual components to thégmonically completespecifications. If

the components conform, then the composition of implementations also conforms to
the composition of the demonically completed specifications.

Corollary 1. Letsy, sy € LTS(I,U) andiy,is € ZOTS(I,U)

i1 ioco E(s1) Aig ioco Z(s2) = i1 || iz ioco E(s1) || Z(s2)

Test restriction. A disadvantage of demonic completion is that it destroys informa-
tion about underspecified behavior. On the basis of the underspecified LTS, one can
conclude that traces including an unspecified input need not be tested because every
implementation will always pass; after completion, however, this is no longer visible,
and so automatic test generation will yield many spurious tests.

In order to avoid this, we characterizeco o = directly over LTS’s. In other words,
we extend the relation frodfO7S x ZO7TS to ZOTS x LTS, in such a way as to
obtain the same testing power but to avoid these spurious tests. For this purpose, we
restrict the number of traces after which we test.

Definition 7. Lets € LTS(I,U).

a
Utraces(s) =qet {0 € Ly | s== AN(Ad,01-a-00 =0:a€INs==q¢ Ngd =)}



Intuitively, the Utraces are theStraces without the underspecified traces. A trage

is underspecified if there exists a prefix - a of o, with a € I, for which s === ¢/

andq’ ;‘B . We useiocoy as a shorthand fabco yirqces. In the following proposi-

tion we state thatoco; is equivalent tdoco o =. This equivalence is quite intuitive.

ioco o = uses extra states to handle underspecified behavior, which are constructed so
as to display chaotic behavior. H(s) reaches such a state, then all behavior is consid-
ered correctioco 7, on the other hand, circumvents underspecified behavior, because
it usesUtraces.

Theorem 4. iocoy = iocoo &

6 Conclusions

The results of this paper imply thidco can be used for compositional testing if the
specifications are modeled as I0TS’s; see theoféms f[Jand 2.

We proposed the functiof' to complete an LTS specification; i.e., transform an
LTS to an IOTS in a way that captures our notion of underspecification. This means that
the above results become applicable andidve theory with completed specifications
can be used for compositional testing. The resulting relation is slightly weaker than
the originalioco relation; previously conformant implementations are still conformant,
but it might be that previously non-conformant implementations are allowed under the
modified notion of conformance.

Testing after completion is in principle (much) more expensive since, due to the
nature of IOTS'’s, even the completion of a finite specification already displays infinite
testable behavior. As a final result of this paper, we have presented the implementation
relationioco ;. This relation enables us to use the original component specifications,
beforecompletion, for compositional testing (see theofém 4).

The insights gained from these results can be recast in teromsdefrspecification
ioco recognizes two kinds of underspecification: omitting input actions from a state
(which implies adon'’t careif an input does occur) and including multiple output actions
from a state (which allows the implementation to choose between them). It turns out that
the first of these two is not compatible with parallel composition and hiding.

Testing in context. We have discussed the pre-congruence properties mainly in the
context of compositional testing, but the results can easily be transposed to testing in
context. Suppose an implementation under tdsttested via a context The tester
interacts withe, andc interacts withi; the tester cannot directly interact withThen

we havel; C U, andU; C I., andL; is not observable for the tester, i.e., hidden.
The tester observes the system as an implementation in a context in the following way:
Cli] = hide (I; N U,) U (I. N U;) in ¢ || i. Now theorenj [l anf] 2 directly lead to the
following corollary for testing in context.

Corollary 2. Lets,i € ZOTS occur in test context[_]. C[i] ioto C[s] = i iofo s

Hence, an error detected while testing the implementation in its context is a real
error of the implementation, but not the other way around: an error in the implemen-
tation may not be detectable when tested in a context. This holds of course under the
assumption that the test context is error free.



Relevance We have shown a way to handle underspecification of input actions when
testing communicating components with flaeo theory. This idea is new for LTS test-
ing. It is inspired by([10] and work done on partial specifications in FSM testing [11].

Furthermore we have established a pre-congruence resitidorfor parallel com-
position and hiding. This is important because it shows thab is usable for com-
positional testing and testing in context. It establishes a formal relation between the
components and the integrated system. As far as we know this result is new for both
LTS testing and FSM testing. In FSM testing there are so called Communicating FSM’s
to model the integration of components. However we have not found any relevant re-
search on the relation between conformance with respect to the CFSM and conformance
with respect to its component FSM’s.

Traditionally conformance testing is seen as the activity of checking the confor-
mance of a single black box implementation against its specification. The testing of
communicating components is often considered to be outside the scope of conformance
testing. The pre-congruence result shows thatdlee theory can handle both problems
in the same way.

Future work. The current state of affairs is not yet completely satisfactory, because the
notion of composition that we require is not defined on general labeled transition sys-
tems but just on IOTS’s. Testing against IOTS'’s is inferior, in that these models do not
allow the “input underspecification” discussed above: for that reason, testing against
an I0TS cannot take advantage of information about “don’t care” inputs (essentially,
no testing is required after a “don’t care” input, since by definition every behavior is
allowed). We intend to solve this issue by extending IOTS’s with a predicate that iden-
tifies our added chaotic states. Testing can stop when the specification has reached a
chaotic state.

Acknowledgments.We want to thank D. Lee and A. Petrenko for sharing their knowl-
edge of FSM testing and for their insightful discussions.
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