
Compositional Testing with IOCO

Machiel van der Bijl1 ?, Arend Rensink1 and Jan Tretmans2

1 Software Engineering, Department of Computer Science, University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands

{vdbijl, rensink }@cs.utwente.nl
2 Software Technology Research Group, University of Nijmegen

P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
tretmans@cs.kun.nl

Abstract. Compositional testingconcerns the testing of systems that consist of
communicating components which can also be tested in isolation. Examples are
component based testing and interoperability testing. We show that, with certain
restrictions, theioco-test theory for conformance testing is suitable for compo-
sitional testing, in the sense that the integration of fully conformant components
is guaranteed to be correct. As a consequence, there is no need to re-test the inte-
grated system for conformance.
This result is also relevant fortesting in context, since it implies that every failure
of a system embedded in a test context can be reduced to a fault of the system
itself.

1 Introduction

In this paper we study formal testing based on theioco-test theory. This theory works
on labeled transition systems (LTS) [1,2]. The nameioco, which stands forinput/output
conformance, refers to the implementation relation (i.e., notion of correctness) on which
the theory and the test generation algorithm have been built. A number of tools are based
on theioco theory, among which there areTGV [3], TESTGEN [4] andTorX [5].

Two open issues in testing theory in general, and theioco-theory in particular, are
compositional testingandtesting in context. For instance, for the testing theory based
on Finite-State-Machines (FSM) this issue has been studied in [6].

Compositional testingconsiders the testing of communicating components that to-
gether form a larger system. An example is component based testing, i.e., integration
testing of components that have already been tested separately. An example from the
telecom sector is interoperability testing, i.e., testing if systems from different manu-
facturers, that should comply with a certain standard, work together; for example GSM
mobile phones. The question is what can be concluded from the individual tests of the
separate components, and what should be (re)tested on the integration or system level.
With the current theory it is unclear what the relation between the correctness of the
components and the integrated system is.

? This research was supported by Ordina Finance and by the dutch research programme
PROGRESS under project: TES5417: Atomyste – ATOm splitting in eMbedded sYStems
TEsting.

Another scenario, with similar characteristics, istesting in context. This refers to
the situation that a tester can only access the implementation under test through atest
context[7,8,9]. The test context interfaces between the implementation under test and
the tester. As a consequence the tester can only indirectly observe and control theIUT

via the test context. This makes testing weaker, in the sense that there are fewer pos-
sibilities for observation and control of theIUT. With testing in context, the question
is whether faults in theIUT can be detected by testing the composition ofIUT and test
context, and whether a failure of this composition always indicates a fault of theIUT.
This question is the converse of compositional testing: when testing in context we wish
to detect errors in theIUT — a component — by testing it in composition with the test
context, whereas in compositional testing we wish to infer correctness of the integrated
system from conformance of the individual components.

This paper studies the above mentioned compositionality properties ofioco for two
operations on labeled transition systems: parallel composition and hiding. Ifioco has
this compositionality property for these operations, it follows that correctness of the
parts (the components) implies correctness of the whole (the integrated system), or that
a fault in the whole (IUT and test context) implies a fault in the component (IUT). This
compositionality property is formally called a pre-congruence.

We show thatioco is a pre-congruence for parallel composition and hiding in the
absence of underspecification of input actions. One way to satisfy this condition is to
only allow specifications which areinput enabled. Another way is to make the under-
specification explicit bycompletion. We show that, in particular,demonic completion
is suitable for this purpose. As a final result we show how to use the original (uncom-
pleted) specifications and still satisfy the pre-congruence property. This leads to a new
implementation relation, baptizediocoU which is slightly weaker thanioco.

This paper has two main results. First we show a way to handle underspecifica-
tion of input actions when testing communicating components with theioco theory.
This idea is new for LTS testing. It is inspired by [10] and similar work done in FSM
testing [11]. Second we establish a formal relation between the components and the
integrated system. As far as we know this result is new for both LTS testing and FSM
testing.

Overview.The next section recalls some basic concepts and definitions about transition
systems andioco. Section 3 sets the scene and formalizes the problems of composi-
tional testing and testing in context. Section 4 studies the pre-congruence properties of
ioco for parallel composition and hiding. Section 5 discusses underspecification, and
approaches to complete specifications with implicit underspecification. Section 6 con-
cludes with some final remarks and an assessment of the results. For a full version of
this paper with all the proofs, we refer to [12].

2 Formal preliminaries

This section recalls the aspects of the theory behindioco that are used in this paper;
see [1] for a more detailed exposition.

Labeled Transition Systems.A labeled transition system (LTS) description is defined
in terms of states and labeled transitions between states, where the labels indicate what
happens during the transition. Labels are taken from a global setL. We use a special
labelτ /∈ L to denote an internal action. For arbitraryL ⊆ L, we useLτ as a shorthand
for L ∪ {τ}. We deviate from the standard definition of labeled transition systems in
that we assume the label set of an LTS to be partitioned in an input and an output set.

Definition 1. A labeled transition systemis a 5-tuple〈Q, I, U, T, q0〉 whereQ is a non-
empty countable set ofstates; I ⊆ L is the countable set ofinput labels; U ⊆ L is the
countable set ofoutput labels, which is disjoint fromI; T ⊆ Q × (I ∪ U ∪ {τ}) × Q
is a set of triples, thetransition relation; q0 ∈ Q is theinitial state.

We useL as shorthand for the entire label set (L = I ∪U); furthermore, we useQp, Ip

etc. to denote the components of an LTSp. We commonly writeq λ−→ q′ for (q, λ, q′) ∈
T . Since the distinction between inputs and outputs is important, we sometimes use a
question mark before a label to denote input and an exclamation mark to denote output.
We denote the class of all labeled transition systems overI andU by LTS(I, U). We
represent a labeled transition system in the standard way, by a directed, edge-labeled
graph where nodes represent states and edges represent transitions.

A state that cannot do an internal action is calledstable. A state that cannot do an
output or internal action is calledquiescent. We use the symbolδ (6∈ Lτ) to represent
quiescence: that is,p δ−→ p stands for the absence of any transitionp λ−→ p′ with λ ∈ Uτ .
For an arbitraryL ⊆ Lτ , we useLδ as a shorthand forL ∪ {δ}.

An LTS is calledstrongly responsiveif it always eventually enters a quiescent state;
in other words, if it does not have any infiniteUτ -labeled paths. For technical reasons
we restrictLTS(I, U) to strongly responsive transition systems. Systems that are not
strongly responsive may show live-locks (or develop live-locks by hiding actions). So
one can argue that it is a favorable property if a specification is strongly responsive.
However, from a practical perspective it would be nice if the constraint can be lessened.
This is probably possible, but needs further research.

A traceis a finite sequence of observable actions. The set of all traces overL (⊆ L)
is denoted byL∗, ranged over byσ, with ε denoting the empty sequence. Ifσ1, σ2 ∈ L∗,
thenσ1·σ2 is the concatenation ofσ1 andσ2. We use the standard notation with single
and double arrows for traces:q a1···an−−−−−→ q denotesq a1−−→ · · · an−−→ q′, q

ε=⇒ q′ denotes
q τ ···τ−−−→ q′ andq

a1·...·an======⇒ q denotesq
ε=⇒ a1−−→ ε=⇒ · · · an−−→ ε=⇒ q′ (whereai ∈ Lτδ).

We will not always distinguish between a labeled transition system and its initial
state. We will identify the processp = 〈Q, I, U, T, q0〉 with its initial stateq0, and we
write, for example,p

σ=⇒ q1 instead ofq0
σ=⇒ q1.

Input-output transition systems. An input-output transition system(IOTS) is a la-
beled transition system that is completely specified for input actions. The class of input-
output transition systems with input actions inI and output actions inU is denoted by
IOTS(I, U) (⊆ LTS(I, U)). Notice that we do not require IOTS’s to be strongly re-
sponsive.

Definition 2. An input-output transition systemp = 〈Q, I, U, T, q0〉 is a labeled transi-
tion system for which all inputs are enabled in all states:∀q ∈ Q, a ∈ I : q

a=⇒

Composition of labeled transition systems.The integration of components can be
modeled algebraically by putting the components in parallel while synchronizing their
common actions, possibly with internalizing (hiding) the synchronized actions. In pro-
cess algebra, the synchronization and internalization are typically regarded as two sep-
arate operations. The synchronization of the processesp andq is denoted byp ‖ q. The
internalization of a label setV in processp, or hiding V in p as it is commonly called,
is denoted byhide V in p. Below we give the formal definition.

Definition 3. For i = 1, 2 let pi = 〈Qi, Ii, Ui, Ti, pi〉 be a transition system.
◦ If I1 ∩ I2 = U1 ∩ U2 = ∅ thenp1 ‖ p2 =def 〈Q, I, U, T, p1 ‖ p2〉 where

◦ Q = {q1 ‖ q2 | q1 ∈ Q1, q2 ∈ Q2};
◦ I = (I1 \ U2) ∪ (I2 \ U1);
◦ U = U1 ∪ U2.
◦ T is the minimal set satisfying the following inference rules (µ ∈ Lτ):

q1
µ−→ q′1, µ 6∈ L2 ` q1 ‖ q2

µ−→ q′1 ‖ q2

q2
µ−→ q′2, µ 6∈ L1 ` q1 ‖ q2

µ−→ q1 ‖ q′2
q1

µ−→ q′1, q2
µ−→ q′2, µ 6= τ ` q1 ‖ q2

µ−→ q′1 ‖ q′2

◦ If V ⊆ U1, thenhide V in p1 =def 〈Q, I1, U1 \ V, T,hide V in p1〉 where
◦ Q = {hide V in q1 | q1 ∈ Q1};
◦ T is the minimal set satisfying the following inference rules (µ ∈ Lτ):

q1
µ−→ q′1, µ 6∈ V ` hide V in q1

µ−→hide V in q′1
q1

µ−→ q′1, µ ∈ V ` hide V in q1
τ−→hide V in q′1

Note that these constructions are onlypartial: there are constraints on the input and
output sets. Moreover, parallel composition may give rise to an LTS that is not strongly
responsive, even if the components are. For the time being, we do not try to analyze
this but implicitly restrict ourselves to cases where the parallel compositionis strongly
responsive (thus, this is another source of partiality of the construction).

In this paper we restrict ourselves to binary parallel composition. N-ary parallel
composition may be an interesting extension. One may wonder however what this
means in our input output setting, since an output action is uniquely identified by its
sender. From this perspective only the synchronization of many receivers to one sender
(broadcast) seems an interesting extension.

Proposition 1. Letp, q ∈ LTS(Ii, Ui) for i = p, q, with Ip ∩ Iq = Up ∩ Uq = ∅, and
let V ⊆ Up.
1. If p ‖ q is strongly responsive thenp ‖ q ∈ LTS((Ip \ Uq) ∪ (Iq \ Up), Up ∪ Uq);

moreover,p ‖ q ∈ IOTS if p, q ∈ IOTS.
2. hide V in p ∈ LTS(Ip, Up \ V); moreover,hide V in p ∈ IOTS if p ∈ IOTS.

Conformance.The testing scenario on whichioco is based assumes that two things
are given: 1) An LTS constituting a specification of required behavior. And 2) an im-
plementation under test. We treat theIUT as a black box. In order to reason about it
we assume it can be modeled as an IOTS (anIUT is an object in the real world) . This

assumption is referred to as the test hypothesis [7]. We want to stress that we do not
need tohavethis model when testing theIUT. We onlyassumethat the implementation
behavesas an IOTS.

Given a specifications and an (assumed) model of theIUT i, the relationi ioco
s expresses thati conforms tos. Whether this holds is decided on the basis of the
suspension tracesof s: it must be the case that, after any such traceσ, every output
action (and also quiescence) thati is capable of should be allowed according tos. This
is formalized by definingp after σ (the set of states that can be reached inp after the
suspension traceσ), out(p) (the set of output andδ-actions ofp) andStraces(p) (the
suspension traces ofp).

Definition 4. Letp, s ∈ LTS(I, U), let i ∈ IOTS(I, U), letP ⊆ Qp be a set of states
in p and letσ ∈ L∗

δ .
1. p after σ =def { p′ | p σ=⇒ p′ }
2. out(p) =def {x ∈ U | p x−→} ∪ {δ | p δ−→}
3. out(P) =def

⋃
{ out(p) | p ∈ P }

4. Straces(p)=def {σ ∈ L∗
δ | p

σ=⇒}

The following defines the implementation relationioco, modulo a functionF that gen-
erates a set of test-traces from a specification. In this definition2X denotes the powerset
of X, for an arbitrary setX.

Definition 5. Given a functionF : LTS(I, U) → 2L∗
δ , we define the implementation

relation iocoF ⊆ IOTS(I, U)× LTS(I, U) as follows:

i iocoF s ⇐⇒ ∀σ ∈ F(s) : out(i after σ) ⊆ out(s after σ)

Soi iocoStraces s means∀σ ∈ Straces(s) : out(i after σ) ⊆ out(s after σ). We
useioco as an abbreviation foriocoStraces . For more detailed information aboutioco
we refer to [1].

3 Approach

In this section we want to clarify compositional testing with the formal framework pre-
sented in the previous section. The consequences for testing in context will be discussed
in the final section.

We study systems that consist of communicating components. These components
can be tested individually and while working together (in the case of testing in context
the components are theIUT and its test context). The behavior of such a system is de-
scribed by the parallel composition of the individual transition systems. Output actions
of one component that are in the input label set of another component aresynchronized,
resulting in a single, internal transition of the overall system. Actions of a component
that are not in the label set of another component are not synchronized, resulting in a
single observable transition of the overall system. This gives rise to the scenario de-
picted in Figure 1. The figure will be explained in the next example.

drk
error

make tea
make coffee

scof = hide {make coffee,make tea, error} in smon ‖ sdrk

0.50, 1.00

0.50, 1.00

coffee, tea

mon

icof = hide {make coffee,make tea, error} in imon ‖ idrk

Fig. 1.Architecture of coffee machine in components

3.1 Example

To illustrate compositional testing, we use two components of a coffee machine: a
“money component” (mon) that handles the inserted coins and a “drink component”
(drk) that takes care of preparing and pouring the drinks, see Figure 1.

The money componentaccepts coins of¤1 and of¤0.50 as input from the envi-
ronment. After insertion of a¤0.50 coin (respectively¤1 coin), the money component
orders the drink component to make tea (respectively coffee).

The drink component interfaces with the money component and the environment.
If the money component orders it to make tea (respectively coffee) it outputs tea (respec-
tively coffee) to the environment. If anything goes wrong in the drink making process,
the component gives an error signal.

The coffee machineis the parallel composition of the money component and the
drink component, in which the “make coffee” command, the “make tea” command and
the “error” signal are hidden. One can think of the parallel composition as establishing
the connection between the money component and the drink component, whereas hiding
means that the communication between the components is not observable anymore;
only communication with the environment can be observed.

Models. In Figure 2 we show the behavioral specification of the money component
smon and the drink componentsdrk as LTS’s. Note that the money component is un-
derspecified for theerror input label and that the drink component cannot recover
from an error state, and while in the error state it cannot produce tea or coffee. Fig-
ure 3 shows implementation models of the money component,imon , and the drink
component,idrk . We have used transitions labeled with ‘?’ as an abbreviation for all
the non-specified input actions from the alphabet of the component. The money com-
ponent has input label set,Imon = {0 .50 , 1 .00 , error}, output label setUmon =
{make coffee,make tea, 0 .50 , 1 .00}; specificationsmon ∈ LTS(Imon, Umon), and
implementationimon ∈ IOTS(Imon, Umon). Idrk = {make coffee,make tea} and
Udrk = {coffee, tea, error} are the input and output label set respectiveley andsdrk ∈
LTS(Idrk, Udrk), idrk ∈ IOTS(Idrk, Udrk).

In the implementations of the components we choose to improve upon the specifica-
tion, by adding functionality. This is possible sinceioco allows partial specifications.

money component specification

drink component specification

coffee
!make !make

tea

?0.50?1.00
tea

?make
coffee
?make

!errorcoffee
?make

tea
?make

coffee
?make

tea
?make

?make tea
?make coffee

?make tea
?make coffee

smon

!error

sdrk

!tea!coffee

!error

Fig. 2.Specification of money and drink components as LTS’s

Implementers are free to make use of the underspecification. The extra functionality
of imon compared to its specificationsmon is that it can handle error signals: it reacts
by returning¤1.00.idrk is also changed with respect to its specificationsdrk : making
tea never produces an error signal. Since implementations are input enabled, we have
chosen that all non specified inputs are ignored, i.e., the system remains in the same
state.

We haveimon ioco smon and idrk ioco sdrk . The question now is whether the
integrated implementation, as given byicof in Figure 1, is alsoioco correct with re-
spect to the integrated specificationscof . We discuss this in section 4, to illustrate the
compositionality properties discussed there.

money component implementation drink component implementation

!make
coffee

!make
tea

imon idrk

?1.00

? ?

tea
?make

coffee
?make

!error
coffee
?make

tea
?make

? ?

??

?0.50

!1.00 ?error
!error

!coffee !tea

Fig. 3. Implementation of the money and drink components as IOTS’s

3.2 Compositional testing

We now paraphrase the question of compositional testing, discussed in the introduction,
as follows: “Given that the componentsp andq have been tested to beioco-correct (ac-
cording to their respective specifications), may we conclude that their integration is
alsoioco-correct (according to the integrated specification)?” If the component speci-
fications are LTS’s, the component implementations are modeled by IOTS’s, and their
integration by parallel composition followed by hiding, this boils down to the following
questions in our formal framework (whereik ∈ IOTS(Ik, Uk) andsk ∈ LTS(Ik, Uk)
for k = 1, 2, with I1 ∩ I2 = U1 ∩ U2 = ∅):

Q1: Givenik ioco sk for k = 1, 2, is it the case thati1 ‖ i2 ioco s1 ‖ s2?
Q2: Given i1 ioco s1, is it the case that (hide V in i1) ioco (hide V in s1) for

arbitraryV ⊆ U1?

If the answer to both questions is “yes”, then we may conclude thatioco is suitable for
compositional testing as stated in the following corollary.

Conjecture 1.If ik ∈ IOTS(Ik, Uk) andsk ∈ LTS(Ik, Uk) for k = 1, 2 with I1 ∩
I2 = U1 ∩ U2 = ∅ andV = (I1 ∩ U2) ∪ (U1 ∩ I2), then

i1 ioco s1 ∧ i2 ioco s2 ⇒ (hide V in i1 ‖ i2) ioco (hide V in s1 ‖ s2) .

We study the above pre-congruence questions in the next section. We will show that
the answer to Q1 and Q2 in general isno. Instead, we can show that the answer to Q1
and Q2 isyesif s1 ands2 are completely specified.

4 Compositionality for synchronization and hiding

In this section we address the questions Q1 and Q2 formulated above (Section 3.2),
using the coffee machine example to illustrate our results.

4.1 Synchronization

The property that we investigate for parallel composition is:if we have two correct
component implementations according toioco, thenthe implementation remains cor-
rect after synchronizing the components. It turns out that in general this property does
not hold, as we show in the following example.

Example 1.Regard the LTS’s in figure 4. On the left hand side we show the specifica-
tions and on the right hand side the corresponding implementations. The models have
the following label sets:s1 ∈ LTS({x}, ∅), i1 ∈ IOTS({x}, ∅), s2 ∈ LTS(∅, {x})
and i2 ∈ IOTS(∅, {x}). The suspension traces ofs1 are given byδ∗ ∪ δ∗?xδ∗ and
the suspension traces ofs2 are given by{ε, !x}∪!x!xδ∗. We havei1 ioco s1 and
i2 ioco s2.

After we take the parallel composition of the two specifications we gets1 ‖ s2,
see figure 4 (the corresponding implementation isi1 ‖ i2). We now see the following:
out(i1 ‖ i2after!x) = {!x} 6⊆ out(s1 ‖ s2after!x) = {δ}; this means that the parallel
composition of the implementations is notioco-correct:i1 ‖ i2 /ioco s1 ‖ s2.

s1 ‖ s2

!x

i1

?x

?x

i2

!x

!x

i1 ‖ i2

!x

!x

s1

!x?x

!x

s2

Fig. 4.Counter example to compositionality for parallel composition; see Example 1

Analysis shows thati1 ioco s1, becauseioco allows underspecification of input
actions. However, the semantics of the parallel composition operator does not take un-
derspecification of input actions into account. Althoughs2 can output a secondx, it
cannot do so ins1 ‖ s2, becauses1 cannot input the secondx.

It turns out that if we forbid implicit underspecification, i.e., if the specification
explicitly prescribes for any possible input what the allowed responses are, then we do
not have this problem. In fact in that case we have the desired compositionality property.
This property is expressed in the following theorem. For a proof see [12].

Theorem 1. Let s1, i1 ∈ IOTS(I1, U1), s2, i2 ∈ IOTS(I2, U2), with I1 ∩ I2 =
U1 ∩ U2 = ∅.

i1 ioco s1 ∧ i2 ioco s2 ⇒ i1 ‖ i2 ioco s1 ‖ s2

Our running example (Section 3.1) shows the same problem illustrated in exam-
ple 1. Although the implementations of the money component and the drink component
areioco correct with respect to their specifications, it turns out that the parallel com-
position ofimon andidrk is not:

out(imon ‖ idrk after ?1 .00 ·!make coffee) = {!coffee, !error}
out(smon ‖ sdrk after ?1 .00 ·!make coffee) = {!coffee}

Note that the internal signals are still visible as output actions. To turn them into
internal actions is the task of thehidingoperator, discussed below.

4.2 Hiding

The property that we investigate for hiding is the following:if we have a correct im-
plementation according toioco, thenthe implementation remains correct after hiding
(some of the) output actions. It turns out that, as for synchronization, in general this
property does not hold.

Example 2.Consider the implementationi and specifications in Figure 5, both with
input set{a} and output set{x, y}. The suspension traces ofs are{ε}∪?aδ∗∪!xδ∗. We
see thati ioco s.

We get the specificationhide {x} in s, and implementationhide {x} in i after
hiding the output actionx. After the inputa we get:out(hide {x} in i after a) =
{δ, y} 6⊆ out(hide {x} in s after a) = {δ}; in other words theioco relation does not
hold:hide {x} in i /ioco hide {x} in s.

hide x in s hide x in is i

?a
?a

?a
!y

?a !x
?a

?a !x ?a τ ?a τ

?a

?a

?a
!y

?a

Fig. 5.Counter-example to compositionality for hiding; see Example 2

An analysis of the above example shows thats was underspecified, in the sense that
it fails to prescribe how an implementation should behave after the trace!x?a. The
proposed implementationi uses the implementation freedom by having an unspec-
ified y-output after!x?a. However, if x becomes unobservable due to hiding, then
the traces!x?a and?a collapse and become indistinguishable: inhide {x} in s and
hide {x} in i they both masquerade as the trace?a. Now hide {x} in s appearsto
specify that after?a, only quiescence (δ) is allowed; however,hide {x} in i still has
this unspecifiedy-output. In other words, hiding creates confusion about what part of
the system is underspecified.

It follows that if we rule out underspecification, i.e., we limit ourselves to specifi-
cations that are IOTS’s then this problem disappears. In fact, in that case we do have
the desired congruence property. This is stated in the following theorem. For a proof
see [12].

Theorem 2. If i, s ∈ IOTS(I, U) with V ⊆ U , then:

i ioco s ⇒ (hide V in i) ioco (hide V in s)

5 Demonic completion

We have shown in the previous section thatioco is a pre-congruence for parallel com-
position and hiding when restricted toIOTS × IOTS. However, in the original the-
ory [1] ioco ⊆ IOTS × LTS; the specifications are LTS’s. The intuition behind this
is that ioco allows underspecification of input actions. In this section we present a
function that transforms LTS’s into IOTS’s in a way that complies with this notion of
underspecification. We will show that this leads to a new implementation relation that
is slightly weaker thanioco.

Underspecification comes in two flavors: underspecification of input actions and
underspecification of output actions. Underspecification of output actions is always ex-
plicit; in an LTS it is represented by a choice between several output actions. The intu-
ition behind this is that we do not know or care which of the output actions is imple-
mented, as long as at least one is. Underspecification of input actions is always implicit;
it is represented by absence of the respective input action in the LTS. The intuition be-
hind underspecification of input actions is that after an unspecified input action we do

not know or care what the behavior of the specified system is. This means that in an
underspecified state — i.e., a state reached after an unspecified input action — every
action from the label set is correct, including quiescence. Following [13] we call this
kind of behaviorchaotic.

In translating LTS’s to IOTS’s, we propose to model underspecification of input ac-
tions explicitly. Firstly, we model chaotic behavior through a stateqχ with the property:
∀λ ∈ U : qχ

λ=⇒ qχ and∀λ ∈ I : qχ
δ∗·λ===⇒ qχ (whereχ stands for chaos). Secondly,

we add for every stable stateq (of a given LTS) that is underspecified for an inputa, a
transition(q, a, qχ). This turns the LTS into an IOTS. After [10] we call this procedure
demoniccompletion — as opposed toangelic completion, where unspecified inputs
are discarded (modeled by adding self-loop transitions). Note that demonic completion
results in an IOTS that is not strongly convergent. However the constraint of strong
convergence only holds for LTS’s.

Definition 6.
Ξ : LTS(I, U) → IOTS(I, U) is defined by〈Q, I, U, T, q0〉 7→ 〈Q′, I, U, T ′, q0〉,
where

Q′ = Q ∪ {qχ, qΩ , q∆}, where qχ, qΩ , q∆ 6∈ Q

T ′ = T ∪{(q, a, qχ) | q ∈ Q, a ∈ I, q
a−−→/ , q

τ−−→/ }
∪{(qχ, τ, qΩ), (qχ, τ, q∆)} ∪ {(qΩ , λ, qχ) | λ ∈ L} ∪ {(q∆, λ, qχ) | λ ∈ I}

specification (LTS) demonically completed specification (IOTS)

τ

qΩ

I ∪ U Iqχ

?0.50
?1.00

?0.50
?1.00

chaotic IOTS

τ

qΩ q∆

I ∪ U I

qχ

q1 q2 q2

teacoffee
!make

coffee
!make !make

tea
!make

τ

q∆

τ

q1

?error
?error

?error

smon

?1.00 ?0.50 ?1.00 ?0.50

smon′

Fig. 6.Demonic completion of an LTS specification

Example 3.To illustrate the demonic completion of implicit underspecification, we use
the money component of section 3.1. The LTS specification of the money component
is given in the top left corner of Figure 6. The IOTS that models our chaos property

is given in the bottom left corner. For every stable state of the specification that is
underspecified for an input action, the functionΞ adds a transition with that input action
to stateqχ. For example, every state is underspecified for input actionerror , so we add
a transition from every state toqχ for error . The statesq1 andq2 are underspecified for
0.50 and1.00, so we add transitions for these inputs fromq1 andq2 to qχ. The resulting
demonically completed specification is given on the right hand side of Figure 6.

An important property of demonic completion is that it only adds transitions from
stablestates with underspecified inputs in the original LTS toqχ. Moreover, it does not
delete states or transitions. Furthermore, the chaotic IOTS acts as a kind of sink: once
one of the added states (qχ, qΩ or q∆) has been reached, they will never be left anymore.

Proposition 2. Lets ∈ LTS(I, U). ∀σ ∈ L∗
δ , q

′ ∈ Qs : s
σ=⇒ q′⇔Ξ(s) σ=⇒ q′

We use the notation “ioco ◦Ξ” to denote that before applyingioco, the LTS spec-
ification is transformed to an IOTS byΞ; i.e., i(ioco ◦Ξ)s⇔ i ioco Ξ(s). This rela-
tion is slightly weaker thanioco. This means that previously conformant implementa-
tions are still conformant, but it might be that previously non-allowed implementations
are allowed with this new notion of conformance.

Theorem 3. ioco ⊆ ioco ◦Ξ

Note that the opposite is not true i.e.,i (ioco ◦Ξ) s /⇒ i ioco s (as the counter-
examples of section 4 show). Furthermore this property is a consequence of our choice
of the demonic completion function. Other forms of completion, such as angelic com-
pletion, result in variants ofioco which are incomparable to the original relation.

Testing. The testing scenario is now such that an integrated system can be tested by
comparing the individual components to theirdemonically completedspecifications. If
the components conform, then the composition of implementations also conforms to
the composition of the demonically completed specifications.

Corollary 1. Lets1, s2 ∈ LTS(I, U) andi1, i2 ∈ IOTS(I, U)

i1 ioco Ξ(s1)∧ i2 ioco Ξ(s2) ⇒ i1 ‖ i2 ioco Ξ(s1) ‖Ξ(s2)

Test restriction. A disadvantage of demonic completion is that it destroys informa-
tion about underspecified behavior. On the basis of the underspecified LTS, one can
conclude that traces including an unspecified input need not be tested because every
implementation will always pass; after completion, however, this is no longer visible,
and so automatic test generation will yield many spurious tests.

In order to avoid this, we characterizeioco ◦Ξ directly over LTS’s. In other words,
we extend the relation fromIOTS × IOTS to IOTS × LTS, in such a way as to
obtain the same testing power but to avoid these spurious tests. For this purpose, we
restrict the number of traces after which we test.

Definition 7. Lets ∈ LTS(I, U).

Utraces(s) =def {σ ∈ L∗
δ | s

σ=⇒ ∧ (6 ∃q′, σ1 ·a·σ2 = σ : a ∈ I ∧ s
σ1==⇒ q′ ∧ q′

a

=6⇒)}

Intuitively, the Utraces are theStraces without the underspecified traces. A traceσ
is underspecified if there exists a prefixσ1 · a of σ, with a ∈ I, for which s

σ1==⇒ q′

andq′ /
a=⇒ . We useiocoU as a shorthand foriocoUtraces . In the following proposi-

tion we state thatiocoU is equivalent toioco ◦Ξ. This equivalence is quite intuitive.
ioco ◦Ξ uses extra states to handle underspecified behavior, which are constructed so
as to display chaotic behavior. IfΞ(s) reaches such a state, then all behavior is consid-
ered correct.iocoU , on the other hand, circumvents underspecified behavior, because
it usesUtraces.

Theorem 4. iocoU = ioco ◦Ξ

6 Conclusions

The results of this paper imply thatioco can be used for compositional testing if the
specifications are modeled as IOTS’s; see theorems 1 and 2.

We proposed the functionΞ to complete an LTS specification; i.e., transform an
LTS to an IOTS in a way that captures our notion of underspecification. This means that
the above results become applicable and theioco theory with completed specifications
can be used for compositional testing. The resulting relation is slightly weaker than
the originalioco relation; previously conformant implementations are still conformant,
but it might be that previously non-conformant implementations are allowed under the
modified notion of conformance.

Testing after completion is in principle (much) more expensive since, due to the
nature of IOTS’s, even the completion of a finite specification already displays infinite
testable behavior. As a final result of this paper, we have presented the implementation
relationiocoU . This relation enables us to use the original component specifications,
beforecompletion, for compositional testing (see theorem 4).

The insights gained from these results can be recast in terms ofunderspecification.
ioco recognizes two kinds of underspecification: omitting input actions from a state
(which implies adon’t careif an input does occur) and including multiple output actions
from a state (which allows the implementation to choose between them). It turns out that
the first of these two is not compatible with parallel composition and hiding.

Testing in context. We have discussed the pre-congruence properties mainly in the
context of compositional testing, but the results can easily be transposed to testing in
context. Suppose an implementation under testi is tested via a contextc. The tester
interacts withc, andc interacts withi; the tester cannot directly interact withi. Then
we haveIi ⊆ Uc andUi ⊆ Ic, andLi is not observable for the tester, i.e., hidden.
The tester observes the system as an implementation in a context in the following way:
C[i] = hide (Ii ∩ Uc) ∪ (Ic ∩ Ui) in c ‖ i. Now theorem 1 and 2 directly lead to the
following corollary for testing in context.

Corollary 2. Lets, i ∈ IOTS occur in test contextC[]. C[i] /ioco C[s] ⇒ i /ioco s

Hence, an error detected while testing the implementation in its context is a real
error of the implementation, but not the other way around: an error in the implemen-
tation may not be detectable when tested in a context. This holds of course under the
assumption that the test context is error free.

Relevance.We have shown a way to handle underspecification of input actions when
testing communicating components with theioco theory. This idea is new for LTS test-
ing. It is inspired by [10] and work done on partial specifications in FSM testing [11].

Furthermore we have established a pre-congruence result forioco for parallel com-
position and hiding. This is important because it shows thatioco is usable for com-
positional testing and testing in context. It establishes a formal relation between the
components and the integrated system. As far as we know this result is new for both
LTS testing and FSM testing. In FSM testing there are so called Communicating FSM’s
to model the integration of components. However we have not found any relevant re-
search on the relation between conformance with respect to the CFSM and conformance
with respect to its component FSM’s.

Traditionally conformance testing is seen as the activity of checking the confor-
mance of a single black box implementation against its specification. The testing of
communicating components is often considered to be outside the scope of conformance
testing. The pre-congruence result shows that theioco theory can handle both problems
in the same way.

Future work. The current state of affairs is not yet completely satisfactory, because the
notion of composition that we require is not defined on general labeled transition sys-
tems but just on IOTS’s. Testing against IOTS’s is inferior, in that these models do not
allow the “input underspecification” discussed above: for that reason, testing against
an IOTS cannot take advantage of information about “don’t care” inputs (essentially,
no testing is required after a “don’t care” input, since by definition every behavior is
allowed). We intend to solve this issue by extending IOTS’s with a predicate that iden-
tifies our added chaotic states. Testing can stop when the specification has reached a
chaotic state.

Acknowledgments.We want to thank D. Lee and A. Petrenko for sharing their knowl-
edge of FSM testing and for their insightful discussions.

References

1. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence. Software—
Concepts and Tools17 (1996) 103–120

2. Tretmans, J.: Testing concurrent systems: A formal approach. In Baeten, J., Mauw, S., eds.:
CONCUR’99. Volume 1664., LNCS, Springer-Verlag (1999) 46 – 65

3. Fernandez, J.C., Jard, C., Jéron, T., Viho, C.: An experiment in automatic generation of
test suites for protocols with verification technology. Science of Computer Programming –
Special Issue on COST247, Verification and Validation Methods for Formal Descriptions29
(1997) 123–146

4. He, J., Turner, K.: Protocol-Inspired Hardware Testing. In Csopaki, G., Dibuz, S., Tarnay, K.,
eds.: Int. Workshop on Testing of Communicating Systems 12, Kluwer Academic Publishers
(1999) 131–147

5. Belinfante, A., Feenstra, J., Vries, R.d., Tretmans, J., Goga, N., Feijs, L., Mauw, S., Heerink,
L.: Formal test automation: A simple experiment. In Csopaki, G., Dibuz, S., Tarnay, K., eds.:
12th Int. Workshop on Testing of Communicating Systems, Kluwer Academic Publishers
(1999) 179 – 196

6. Petrenko, A., Yevtushenko, N.: Fault detection in embedded components. In Kim, M., Kang,
S., Hong, K., eds.: Tenth Int. Workshop on Testing of Communicating Systems, Chapman &
Hall (1997) 272–287

7. ISO/IEC JTC1/SC21 WG7, ITU-T SG 10/Q.8: Information Retrieval, Transfer and Manage-
ment for OSI; Framework: Formal Methods in Conformance Testing. Committee Draft CD
13245-1, ITU-T proposed recommendation Z.500. ISO – ITU-T, Geneve (1996)

8. Jard, C., J́eron, T., Tanguy, L., Viho, C.: Remote testing can be as powerful as local test-
ing. In: Formal Desciption Techniques and Protocol Specification, Testing and Verification
FORTE XI /PSTV XVIII ’99, Kluwer Academic Publishers (1999)

9. Petrenko, A., Yevtushenko, N., Von Bochman, G.: Fault models for testing in context. In
Gotzhein, R., Bredereke, J., eds.: FORTE. Volume 69 of IFIP Conference Proceedings.,
Kluwer (1996) 163 – 178

10. De Nicola, R., Segala, R.: A process algebraic view of Input/Output Automata. Theoretical
Computer Science138(1995) 391–423

11. Petrenko, A., Bochmann, G.v., Dssouli, R.: Conformance relations and test derivation. In
Rafiq, O., ed.: Sixth Int. Workshop on Protocol Test Systems. Number C-19 in IFIP Trans-
actions, North-Holland (1994) 157–178

12. van der Bijl, M., Rensink, A., Tretmans, J.: Component based test-
ing with ioco. Technical report, University of Twente (2003) URL:
http://wwwhome.cs.utwente.nl/˜vdbijl/papers/CBT.pdf.

13. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential pro-
cesses. Journal of the Association for Computing Machinery31 (1984) 560–599

	Compositional Testing with ioco
	Machiel van der Bijl , Arend Rensink and Jan Tretmans

