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Abstract. In this paper, we present Famke. It is a library for Clean that
enables the creation and management of independent distributed pro-
cesses (written in Clean) on a network of computers. The main feature
of Famke is that values of any type, i.e. data and code, can be commu-
nicated between independent processes in a type safe way. Famke uses
Clean’s dynamic types and its dynamic linker to extend running applica-
tions with new code (plug-ins) that, if its type matches the types used in
the application, are guaranteed to fit. Clean no longer offers any support
for concurrent evaluation, but fortunately, we can realize threads, sig-
nalling and exception handling by using first class continuations without
the need for additional run-time support. We have made an interactive
shell on top of Famke with which the user can manipulate processes inter-
actively. The shell uses a functional-style command language and it type
checks the command line before performing it. Preemptive scheduling is
done by the underlying operating system (currently Microsoft Windows)
but cooperative scheduling is done by Famke. Famke has been made in
such a way that it could very well serve as the kernel of a stand-alone
operating system entirely written in a pure functional language.

1 Introduction

Functional programming languages like Haskell [1] and Clean [2] offer a very
flexible and powerful static type system. Compact, reusable, and readable pro-
grams can be written in these languages while the static type system is able
to detect many programming errors at compile time. But this works only for a
single program.

Independently developed applications often need to communicate with each
other. One would like the communication of objects of any type to take place in
a type safe manner as well. In practice, this is not so easy to realize: the compile
time type information is generally not kept inside a compiled executable, and
therefore cannot be used at run-time. In real life therefore, applications often only
communicate simple data types like streams of characters, ASCII text, or use
some ad-hoc defined (binary) format. Although more and more applications use
XML to communicate data together with the definitions of the data types used,



most programs do not support run-time type unification, cannot use previously
unknown data types and cannot exchange functions or code.

It would be great if we could communicate expressions of any of the types
modern functional programming languages offer. In particular, we want to be
able to communicate functions, i.e. code! If we can communicate a (possibly
polymorphic) function in a type safe way, we are in principle able to extend a
running application with a new plug-in that can be type checked after which it
is guaranteed to fit. Clearly, we need a powerful dynamic type system for this
purpose and a way to dynamically extend a running application with new code.

Fortunately, the new Clean system offers some of the required basic facilities:
it offers a hybrid type system with static as well dynamic typing (dynamics),
including run-time support for dynamic linking. However, to realize process man-
agement and type safe communication Clean is lacking some important facilities
as well.

Clean offers only very limited library support for process creation and process
communication. Besides support for heavyweight (distributed) processes it would
also be nice to have support for lightweight threads. Old versions of Concurrent
Clean [3] did offer sophisticated support for parallel evaluation and lightweight
processes. An implementation existed on a network of Apple Macintosh com-
puters and multiprocessor Transputer systems. Unfortunately, Intel compatible
Personal Computers turned out to be less suited for an efficient implementation
of the required run-time support and, over the years, Microsoft Windows has
become the main platform for Clean. Consequently, current versions of Clean no
longer support the old Concurrent Clean annotations for parallel and interleaved
evaluation.

In the context of processes, exception handling is a very important facility.
Many strict functional programming languages offer an exception handling mech-
anism. However, a semantically sound and nice solution for exception handling
in a pure and lazy functional language has not yet been proposed. Haskell is an
example of pure and lazy languages that does provide exception handling, but
only in strict contexts because exceptions can only be caught in the I0 monad.
Clean does not have an exception handling mechanism at all.

In this paper, we present Famke. Famke enables easy creation and man-
agement of (distributed) processes and type safe communication between these
processes. It makes use of the new facilities offered by Clean (dynamic typing and
dynamic linking) and offers threads, processes and exception handling without
requiring new language constructs or run-time support. Famke can be seen as a
tiny functional operating system written (in Clean) on top of an existing operat-
ing system (Windows). This leaning on Windows avoids duplication of work and
enables a better integration with existing software (e.g. other processes written
in other programming languages, resources and the file system).

With Famke, we want to accomplish the following objectives without being
forced to make any changes to the Clean compiler or run-time system.



— Present an interface for the Clean programmer with which it is easy to create
(distributed) processes that can communicate any expression of any type in
a type safe way;

— Present a typed interactive shell for the user with which it is easy to manage,
apply and combine (distributed) processes interactively and in a type safe
way;

— Achieve a modular design using an extendable micro kernel approach;

— Achieve a reliable system by using static types where possible and (early)
dynamic type checks only when static types are insufficient;

— Achieve a system that is easy to port to another operating system.

The outline of this paper is as follows: Sect. 2 introduces the static/dynamic
hybrid type system of Clean. In Sect. 3, we will show a way to build cooperative
threads and exceptions in Clean, without changing the compiler or the run-
time system. The implementation of exception handling will show that dynamics
are very useful as containers for handling values of any type. In Sect. 4 we
presents an interface for communication between threads and an interface for
creating preemptive processes. Again, the dynamics play an important role in
the implementation of run-time checked type safe communication. Sending and
receiving of dynamics that contain functions, which requires dynamic linking,
will be used to implement process management. The last thing we will present in
Sect. 5 is the first application that uses our concurrency primitives: an interactive
shell that type checks the command line. Related work is discussed in Sect. 6
and we conclude and mention further research in Sect. 7.

2 Dynamics

Clean has recently been extended with a dynamic type system [4] in addition to
its static type system. A dynamic is a value of type Dynamic which contains a
value as well as a representation of the type of that value.

dynamic 42 :: Int?
Dynamics can be formed using the keyword dynamic in combination with the
value and an optional type (otherwise the compiler will infer the type), separated
by a double colon.

matchInt :: Dynamic -> Int
matchInt (x :: Int) = x
matchInt else = abort "Not an integer"

Values of type Dynamic can be matched in function alternatives and case pat-
terns. Such pattern matches consist of an optional value pattern and a type
pattern. In the example above, matchInt returns the value x inside the dynamic
if it has type Int; it aborts if it has any other type.

! Numeric literals are not overloaded in Clean, hence the type Int in-
stead of (Num a) => a.



dynamicApply :: Dynamic Dynamic -> Dynamic2
dynamicApply (f :: a -> b) (x :: a) = dynamic (f x) :: b
dynamicApply _ = dynamic "Cannot apply"

A type pattern can contain type variables which, if the run-time unification is
successful, are bound to the offered type. In the example above, dynamicApply
tests if the type of the function f inside its first argument can be unified with
the type of the value x inside the second argument. If this is the case then
dynamicApply can safely apply £ to x. The result of the application has type b.
At compile time it is generally unknown what this type b will be, but, since b
will be instantiated by the unification, the result can be wrapped into a dynamic
again.

: Maybe a = Nothing | Just a®

matchDynamic :: Dynamic -> Maybe t | TC tt
matchDynamic dyn = case dyn of

(x :: t7) -> Just x
-> Nothing

Type variables in dynamic patterns can also relate to a type variable in the static
type of a function. A carrot behind a variable in a pattern tells the compiler
that the type variable has to corresponds with the static type variable with
the same name in the static type of the function. The static type variable then
becomes overloaded in the predefined TC (type code) class. In the example above,
the static type t will be determined by the context in which matchDynamic is
used, and will impose a restriction on the actual dynamic type that is accepted
by matchDynamic. matchDynamic is therefore an example of a type dependent
function. It yields Just the value inside the dynamic (if the dynamic contains a
value of the required, context dependant, type) or Nothing (if it does not).

writeDynamic :: String Dynamic *World -> (Bool, *World)®
readDynamic :: String *World -> (Bool, Dynamic, *World)

The dynamic run-time system supports writing dynamics to disk and reading
them in again, possibly in another program or during another run of the same
program. When a dynamic has been read in, a run-time unification (caused by
a pattern match on the dynamic) has succeeded and the value contained in the
dynamic is actually used, the dynamic run-time system will instruct the dynamic

2 Function types in Clean separate arguments by white space instead of ->.

3 A ::, instead of the data keyword of Haskell, precedes a type defini-
tion in Clean. This Maybe type is exactly the same as the Haskell type Maybe.

4 Clean denotes overloading in a class K as: a | K a, whereas Haskell uses (K a) => a.

5The * in front of the World is a uniqueness attribute indicat-
ing that the World environment will be passed around in a single-
threaded way. Clean’s type checker will reject sharing of unique ob-
jects. Unique objects allow safe destructive updates and are there-
fore also used to do I/O in Clean. The value of type World in Clean corre-
sponds to the hidden state of the I0 monad in Haskell.



linker to automatically link in the required data and code. Later on, we will use
Clean’s ability to read in typed data and to link in code at run-time to implement
type safe communication of values of any type.

dynamicToString :: Dynamic -> (Bool, String)
stringToDynamic :: String -> (Bool, Dynamic)

The run-time system also provides functions to convert dynamics to its string
representation and back, which are also internally used by writeDynamic and
readDynamic. Because we do not want to read and write files each time we want
to send a message to someone, we will use dynamicToString and stringToDynamic
when we introduce our communication interface.

3 Threads

Although, Windows offers threads to enable multi-tasking within a single pro-
cess, there is no run-time support for making use of these preemptive threads in
Clean. We can use the preemptive processes that Windows provides by starting
multiple Clean programs, but this is not practical. In order to give the program-
mer the choice between processes and threads we decided to implement threads
ourselves in Clean, and to provide an interface to the Windows processes later
on. Unfortunately, because Clean generates sequential code, we can only provide
cooperative threads. The advantage of this approach is that these threads are
very lightweight, and implementing them in Clean does not require any special
run-time support. As a result, threads can be used independently of any under-
lying operating system. This makes it easier to eventually build in an operating
system written entirely in Clean.

In order to implement threads we need a way to save running computations
and to resume them later. Wand [5] shows us that this can be done using con-
tinuations and the call/CC construct offered by Scheme and other functional
programming languages. We implement threads by using first class continua-
tions in Clean, without the usage of call/CC (with, according to Thielecke [6]
can be dangerous).

:: Thread a :== (a -> KernelOp) -> Kernel[]p6
:: KernelOp :== Kernel -> Kernel

threadExample :: Thread a
threadExample = \cont kernel -> cont x kernel‘

where
X = ... // calculate argument for cont
kernel‘ = ...kernel... // operate on the kernel state

A function of the type Thread, such as the example function above, gets the
tail of a computation (named cont; of type a -> KernelOp) as its argument
and combines that with a new computation step, which calculates the argument

5 Clean uses :== to indicate a type synonym. Haskell uses the type keyword.



(named x) for the tail computation, to form a new function (of type KernelOp).
This function yields when evaluated on a kernel state (named kernel; of type
Kernel) a new kernel state.

:: Threadld // abstract thread id

*Kernel” = {currentId :: ThreadId, newld :: ThreadIld, world :: *World,
ready :: [ThreadInfo], paused :: [ThreadInfol}

:: ThreadInfo = {threadId :: ThreadId, threadCont :: KernelOp}

:: Void = Void // written more elegantly as () in Haskell

The kernel state is a record that contains the information required to do the
scheduling of the threads. It contains information like the current running thread
(named currentId), the threads that are ready to be scheduled (in the ready
list), paused or blocked threads (in the paused list), and the world state which
is provided by the Clean run-time system.

newThread :: (Thread any) -> Thread Threadld

newThread thread = \c k=:{newId, ready}® ->
let threadInfo = {threadCont = thread ignoreResult, threadId = newId}9 in
¢ newld {k & newId = inc newlId, ready = ready ++ [threadInfol}

where
ignoreResult x kernel = kernel

threadld :: Thread Threadld
threadIld = \c k=:{currentId} -> c currentld k

pauseThread :: Thread Void

pauseThread = \c k=:{currentld, paused} ->
let threadInfo = {threadCont = c¢ Void, threadId = currentId} in
{k & paused = [threadInfo:paused]}

resumeThread :: ThreadId -> Thread Void
resumeThread id = \c k=:{ready, paused} ->
let (threadInfo, paused) = extract id paused in
¢ Void {k & ready = ready ++ [threadInfo]}
where
extract id list = ... // return and remove from list

1iftI0 :: (*World -> (a, *World)) -> Thread a
1liftI0 £ = \c k=:{world} ->
let (x, world‘) = f world in c x {k & world = world‘}

" Record types in Clean are surrounded by { and }. The * before Kernel indi-
cates that the record must always be unique. In the rest of the code, there-
fore, the * can then be left out in front of Kernel.

& In Clean, r=:{f} denotes the selection of the field £ in the record r.

°{r & £ = v} denotes a mnew record value that is equal to r ex-
cept for the field £, which is equal to v.



The newThread function starts the given thread concurrently with the other
running and paused threads within the current process. Threads are primarily
used to have an effect on the kernel and world state. They therefore do not yield a
result, hence the polymorphically parameterized Thread any type. It relieves our
system from the additional complexity of returning a result to the parent thread.
The communication primitives that will be introduced later, enable programmers
to extend the newThread primitive to deliver a result to the parent.

Threads can obtain their thread identification with threadId. A thread can
pause or block itself with pauseThread. Another thread can resume the paused
thread with the help of resumeThread. In order to use functions defined in the
Clean run-time system that operate on the world state, 1iftI0 is available. It
evaluates the given function on the current world state, stored in the kernel
state. Ideally, 11ftI0 should only be used in device drivers and other low level
I/0O code.

yieldThread :: Thread Void
yieldThread = \c k -> yield (c Void) k

yield :: KernelOp Kernel -> Kernel
yield ¢ k=:{currentId, ready} = {k & ready = ready ++ [threadInfo]}
where

threadInfo = {threadId = currentld, threadCont = c}

schedule :: Kernel -> Kernel
schedule k=:{ready = [1} = k
schedule k=:{ready = [threadInfo:taill}
let threadld, threadCont = threadInfo
k‘ = {k & ready = tail, currentIld = threadId}
k¢¢ = threadCont k¢ /* evaluate the thread */ in
= schedule k¢

StartFamke :: (Thread any) World -> World
StartFamke mainThread world = (schedule kernel).world
where
firstld = ... // first thread id
kernel = {currentId = firstId, newld = inc firstId,
ready = [threadInfol, paused = [], world = world}
threadInfo = threadld = firstId, threadCont = mainThread ignoreResult
ignoreResult _ kernel = kernel

Scheduling of the threads is done cooperatively. This means that threads must
force rescheduling themselves occasionally using the yieldThread function. The
schedule function then evaluates the next ready thread. StartFamke can be used
much like the standard Clean Start function to start the evaluation of the main
thread.

A thread that is currently being evaluated returns directly to the scheduler
whenever it performs a yield(Thread) action, because yield does not evaluate
the tail of the computation. Instead, it stores the continuation at the back of the
ready queue (to achieve round-robin scheduling) and yields the current kernel



state. The scheduler then uses this new kernel state to evaluate the next ready
thread.

Programming threads using a continuation style is cumbersome, in partic-
ular because one often has to perform an explicit yield. Therefore, we added
thread-combinators resembling a more common monadic programming style.
Our return, >>= and >> functions resemble the monadic return, >>= and >>
functions of Haskell.

Whenever a running thread performs a bind or return, control is voluntarily
given to the scheduler, using yield.

return :: a -> Thread a
return x = \c k -> yield (c x) k

(>>=) infixl 1'° :: (Thread a) (a -> Thread b) -> Thread b
(>>=) 1r=\ck >1 (\x -> yield (r x ©)) k

(>>) infixl 1 :: (Thread a) (Thread b) -> Thread b
(>> 1r=1>»=\_-—>r

combinatorExample =
calculateX >>= \x ->
doSomething >>
return x

Unfortunately, Clean does not support the Haskell do-notation for monads,
which would make the code even more readable.

Our continuation implementation of concurrent threads allows us, for exam-
ple, to construct the UNIX fork operation on top of the newThread primitive.

fork :: Thread (Maybe ThreadId)
fork = \cont kernel ->
let child = \_ -> cont Nothing
parent = \childId -> cont (Just childId) in
newThread child parent kernel

forkExample =
fork >>= \maybe ->
case maybe of
Nothing -> ... // child branch
Just childId -> ... // parent branch

The fork function returns Nothing to the child and returns Just the child’s
thread id to the parent. Both the child and the parent concurrently execute the
same tail of the computation. fork accomplishes this by catching the given con-
tinuation (named cont) that represents the tail of the computation and creating
a new thread using newThread.

10 (op) infixa n defines an infix operator called op in Clean. a indi-
cates left, right or no associativity and n indicates its priority.



3.1 Exceptions

Most of the primitive thread operations may fail because of external conditions
such as errors returned by the underlying operating system or by other threads.
Programs can therefore easily become cluttered with lots of error checking code.
An elegant solution for this kind of problem is the use of exception handling.

There is no exception handling mechanism in Clean, but our thread contin-
uations can easily be extended to handle exceptions. Therefore, exceptions can
only be thrown or caught by a thread, just as exceptions can only be caught in
the I0 monad in Haskell (using their ioError and catch functions).

To provide exception handling, the enhanced thread continuations do not
only have a continuation argument for success, but they also have a continuation
argument for the case that an exception was thrown.

:: Thread a :== (SuccCnt a) ExcCnt -> KernelOp
:: SuccCnt a :== a ExcCnt -> KernelOp
:: ExcCnt :== Exception -> KernelOp

Exceptions are implemented using dynamics, which make it possible to store any
value and to easily extend the set of exceptions.

:: Exception = Exception Dynamic

toException :: e -> Exception | TC e
toException e = Exception (dynamic e)

throw :: e -> Thread any | TC e
throw x = \sc ec k -> ec (toException x) k

try :: (Thread a) (Exception -> Thread a) -> Thread a
try thread catcher =

\sc ec k -> thread (\x _ -> sc x ec) (\e -> catcher e sc ec) k

rethrow :: Exception -> Thread any
rethrow exception = \sc ec k -> ec exception k

(>>]) infixr 1 :: (e -> a) (Exception -> a) -> (Exception -> a) | TC e
(>>]) catchThis catchOther =
\(Exception exception) -> case exception of
(this :: e”) -> catchThis this
other -> catchOther other

The throw function wraps values in an exception and throws them to the en-
closing try clause. The try function catches any exceptions that occur during
the evaluation of its first argument (thread) and feeds it to its second argu-
ment (catcher). Because any value can be thrown, exception handlers must be
matched against the exceptions. For this purpose, we introduced the >>| oper-
ator. It is a type dependant function, which uses a dynamic pattern match to
check whether the type of the thrown exception is of the expected static type.



If so, it applies the corresponding handler: catchThis. Otherwise, the other
handler, catchOther, is used.

The kernel provides an outermost exception handler that aborts the thread
when an uncaught exception remains. This exception handler informs the pro-
grammer that an exception was not caught by any of the handlers and shows
the type of occurred exception.

The addition of an exception continuation to the thread type also requires
small changes in the implementation of the return and bind functions. We also
show part of the exception type that is used by thread primitives that may throw
exceptions.

return :: a -> Thread a
return x = \sc ec k -> yield (sc x ec) k

(>>=) infixl 1:: (Thread a) (a -> Thread b) -> Thread b
(>>=) 1 r =\sceck ->1 (\x ec’ -> yield (r x sc ec‘)) ec k

:: ThreadExceptions = InvalidThreadId |

Note how the return and (re)throw functions complement each other: return
evaluates the success continuation while throw evaluates the exception contin-
uation. This gives a lean implementation of exception handling because there
is no need to test if an exception occurred at every bind or return. The only
overhead caused by our exception handling mechanism is the need to carrying
the exception continuation along.

Below we present a very simple (and very forced) example of the use of
exceptions:

:: ArithErrors = DivByZero | Overflow

exceptionExample =
try (
divide 42 0
) (catchDiv >>| rethrow)
where
divide x O

throw DivByZero

divide x y = return (x / y)

catchDiv DivByZero = abort "Division by zero"
catchDiv Overflow = abort "Arithmetic overflow"

The divide function in the example throws the value DivByZero as an exception
when the programmer tries to divide by zero. Exceptions caught in the try body
that contain values of the type ArithErrors are handled by catchDiv. Caught
exceptions of any other type are handled by rethrow and are therefore thrown
outside the try body.

The try/catch construction looks nice, thanks to the >>| operator and the
rethrow function. Unfortunately, there is no support for identifying the excep-
tions that a function may throw automatically. This is partly because exception



handling is written in Clean and not built in the language/compiler, partly be-
cause exceptions are wrapped in dynamics and can therefore not be expressed
in the type of a function. Exceptions of any type can be thrown by any thread,
which makes it hard to be sure that all relevant exceptions are caught by the
programimer.

3.2 Signals

In a distributed or concurrent setting, there is also a need for throwing and catch-
ing exceptions between different threads. We call this kind of exceptions signals
(in Haskell they are called asynchronous exceptions). Signals allow threads to
detect things like a kill request from other threads.

throwTo :: ThreadId e -> Thread Void | TC e
rethrowTo :: ThreadId Exception -> Thread Void

signalsOn :: (Thread a) -> Thread a
signals0ff :: (Thread a) -> Thread a

Signals are transferred from one thread to the other by the scheduler. A sig-
nal becomes an exception when it arrives that the designated thread, and can
therefore be caught in the same way as other exceptions. To prevent interruption
by signals, threads can enclose operations in a signals0ff clause. Regardless
of any nesting, signalsOn means interruptible and signals0ff always means
non-interruptible. It is, therefore, always clear whether program code can or
cannot be interrupted. It also allows easy composition and nesting of program
fragments that use these functions. When a signal is thrown, control goes to the
exception handler. The interruptible state is then restored back to the state it
was in before entering the try.

If a thread pauses or blocks inside a signals0ff clause, it could be suspended
indefinitely. One way to prevent this is to make functions that contain a busy
waiting loop interruptible by placing a signalsOn (return Void) inside the
loop. This creates a small window for signals to occur while waiting for a resource
to become available.

interrupableUseOfResourceExample =
signals0ff (
acquireResource >>= \r ->
useResource r >>
releaseResource r
)
where
acquireResource =
attemptAcquire >>= \maybe ->
case maybe of
Just resource -> return resource
Nothing -> signalsOn (return Void) >>
acquireResource



The acquireResource function in the above example uses the (fictional) non-
blocking attemptAcquire function to allocate some resource, without allowing
interruption by signals. If the resource cannot be allocated, it goes into a busy-
waiting loop until it can be allocated. This makes acquireResource appear
blocking. In order to prevent deadlock and allow interruption, it allows inter-
ruption only at moments where it is still safe to interrupt: while the resource
cannot be allocated.

4 Processes

Our system uses Windows processes to provide preemptive task switching be-
tween groups of threads running inside different processes. Once processes have
been created on one or more computers, threads can be started in any one of
them. The dynamic linker plays an essential role in getting the code of a thread
from one process to another.

4.1 Ports

Elegant ways for type-safe communication between threads are Haskell’s M-vars
and Clean’s lazy graph copying, upon which easy-to-use first class channels can
be built. Unfortunately, both solutions do not scale very well to a network of
workstations because they require distributed garbage collection.

A common solution that does not need a distributed garbage collector is the
use of ports. In contrast with M-vars and channels that can have multiple readers,
ports have only one reader: the thread that created the port. Therefore, it is
always clear where a port resides: at the location of the reader. This restriction
allows a less complex administration to implement ports than to implement
distributed M-vars. It also makes reasoning about them easier, especially in
combination with failing remote computers. If the port does not reside on the
failing computer, it will continue to work after the failure.

:: Port msg // abstract port id
:: PortExceptions = UnregisteredPort | PortInvalidMessage |

newPort :: Thread (Port msg) | TC msg
closePort :: (Port msg) -> Thread Void | TC msg

writePort :: (Port msg) msg -> Thread Void | TC msg
writePort port m = writeMailslot port (dynamicToString (dynamic m))

readPort :: (Port msg) -> Thread msg | TC msg
readPort port = readMailslot port >>= \maybe ->
case maybe of
Just s -> case (stringToDynamic s) of
(m :: msg”) -> return m
-> throw PortInvalidMessage



-> readPort port

registerPort :: (Port msg) String -> Thread Void | TC msg
lookupPort :: String -> Thread (Port msg) | TC msg

The newPort function creates a new port and closePort removes a port. All
primitives on ports operate on typed messages. The dynamics run-time system
is used to convert the messages to and from a dynamic. The readPort and
writePort function use dynamicToString and stringToDynamic from the dy-
namics library to convert a dynamic to and from a string.

The actual sending/receiving of these strings is done via Windows using
the mail slot interface (the readMailslot and writeMailslot functions). The
registerPort function associates a unique name with a port, by which the port
can be looked up using lookupPort. This implementation of ports gives us an
asynchronous message passing system. Such a system allows the programmer
to build other communication and synchronization methods such as: remote
procedure calls, semaphores and channels.

Here is a skeleton example of a database server that uses a port to receive
functions from clients and applies them to the database.

: DBase = ... // list of records, or something

server :: DBase -> Thread Void
server db = openPort >>= \port ->
registerPort port "MyDBase" >>
handleRequests db
where
handleRequests db = readPort port >>= \f ->
let db‘ = £ db /* apply to database */ in
handleRequests db°¢

client :: Thread Void
client = lookupPort "MyDBase" >>= \port ->
writePort port mutateDatabase

where
mutateDatabase :: DBase -> DBase
mutateDatabase db = ... // change the database

The server creates, and registers, a port that receives functions of the type DBase
-> DBase. Clients send the functions that perform mutations of the database to
the registered port. The registered port has the type Port (DBase -> DBase)
and therefore accepts only messages of this type. It then waits for messages (i.e.
functions) to arrive and applies them to the database db. These functions can be
safely applied to the database because the dynamic run-time system guarantees
that both the server and the client have the same notion of the type of the
database: DBase.



4.2 Process Management

Since Windows does the preemptive scheduling of processes, our thread scheduler
does not need any knowledge about multiple processes. Instead of changing the
scheduler, we make our system automatically add a management thread to each
process when it is created. This management thread handles signals from other
processes and routes them to the designated threads. On request from threads
on other processes, it also handles the creation of new threads on its own process.

:: Proc // abstract process id
:: Location :== String // Windows PC name
newProc :: Location -> Thread Proc
procLocation :: Proc -> Location

newThreadAt :: Proc (Thread a) -> Thread ThreadId | TC a
threadProc :: ThreadId -> Proc

The newProc function creates a new process at a given location and returns
its process id. The location of a process can be found out using procLocation.
The newThreadAt function starts a new thread in another process, threadProc
returns the process id where the given thread resides. The creation of a new pro-
cess is implemented by starting a pre-compiled Windows executable, the loader,
which becomes the new process. The loader is a simple Clean program that
runs the management thread. The thread is then started inside the new process
by sending it to the remote management thread via a typed port. When the
management receives the thread, it starts the threads using the local newThread
function. The dynamic linker on the remote computer then links in the corre-
sponding code of the new thread automatically.

The extension of our system with this kind of heavyweight process enables the
programmer to build distributed concurrent applications. A port of our system to
operating systems other than Windows would enable distributed programs over
a heterogeneous network of computers. If one wants to make Clean programs,
that contain parallel algorithms, run on a farm of computers, this is a first
step. However, it does require non-trivial changes to the original program. These
changes include splitting the program code into separate threads and making
communication between the threads explicit.

Here is an example of starting a thread at a remote computer, in order to
evaluate the thread in a preemptive concurrent way, and getting the result back
to the parent.

:: *Remote a = Remote (Port a)

remote :: Proc (Thread a) -> Thread (Remote a) | TC a
remote pid thread = newPort >>= \port ->
newThreadAt pid (thread‘ port) >>
return (Remote port)
where
thread‘ port = thread >>= \result ->



writePort port result

join :: (Remote a) -> Thread a | TC a

join (Remote port) = waitPort port >>= \result ->
closePort port >>
return result

The remote function creates a port where the result of the given thread must be
sent. It then starts a child thread that calculates the result and writes it to the
port, and returns the port enclosed in a remote handle to the parent. When the
parent decides that it wants the result, it can use the join function to get it and
to close the port.

So far, we have discussed our library that adds support for threads (with
exceptions and signals), processes and type-safe communication of values of any
type between them. Now it is time to present the first application that makes
use of these strongly typed concurrency primitives.

5 The Shell

A shell provides a way to interact with an operating system, usually via a textual
command line/console interface. Normally, a shell does not provide a complete
programming language, but it does enable users to start pre-compiled programs.

Although most shells provide simple ways to combine multiple programs,
e.g. pipelining and parallel execution, and support execution flow controls, e.g.
if-then-else constructs, they do not provide a way to construct new programs.
Furthermore, they provide very limited error checking before executing the given
command line. This is mainly because the programs mentioned at the command
line are practically untyped since they work on, and produce, streams of char-
acters. The intended meaning of these streams of characters varies from one
program to the other.

Our view on pre-compiled programs differs from the common operating sys-
tem in that they are dynamics that contain a typed function, and not untyped
executables. Programs are therefore typed and our shell puts this information
to good use by actually type checking the command line before performing the
specified actions. The shell also understands function application and a subset
of Clean’s constant denotations. The shell syntax closely resembles Haskell’s
do-notation. It has been extended with operations to read and write files.

Here follow some examples of command lines.

map (add 1) [1..10]

The map and add are unbound names in this example and our shell therefore
assumes that they are names of files. All files are supposed to contain dynamics,
which combined represent a typed file system. The shell reads them in from disk
and inspects the types of the dynamics. It uses the types of map (let us assume:
(Int -> Int) [Int] -> [Int]), add (let us assume: Int Int -> Int) and the
list comprehension (which has type: [Int]) to type-check the command line. If



this succeeds, which it should given the types above, the shell applies the partial
application of add with the integer one to the list of integers from one to ten,
using the map function.

inc <- add 1; map inc [2,4..10]

Defines a variable with the name inc as the partial application of the add func-
tion to the integer one. Then it applies the map function using the variable inc
to the list of even integers from two to ten.

inc <- add 1; map inc [’a’..’z’]

Defines the variable inc as in the previous example, but applies it, using the
map function, to the list of all the characters in the alphabet. This obviously
fails with a type error.

write "result" (add 1 2); x <- read "result"; x

add 1 2 > result; x < result; x

Both the above examples do the same thing, because the < (read file) and >
(write file) shell operators can be expressed using the predefined read and write
functions. The sum of one and two is written to the file with the name result.
The variable x is defined as the contents of the file with the name result, and the
result of the command line is the contents of the variable x. In contrast with the
add and map functions that are read from disk by the shell before type checking
and executing the command line, result is read in during the execution of the
command line.

pid <- newProc "RemotePC"; newThreadAt pid (3.14 > pi)

In this example, the shell is used to start a new process on a remote computer.
There must already be at least one other Famke-process (e.g. the shell) running
at the computer, named RemotePC, to service the request. It then creates a thread
inside the new remote process that writes the floating-point number 3.14 to a
file named pi on the remote computer.

6 Related Work

There are concurrent versions of both Haskell and Clean. Concurrent Haskell
[7] offers lightweight threads in a single UNIX process and provides M-vars as
the means of communication between threads. Concurrent Clean was only avail-
able on multiprocessor Transputers and on a network of single-processor Apple
Macintosh computers. Concurrent Clean provided support for native threads
on the Transputer systems. On a network of Apple computers, it ran the same
Clean program on each processor, providing a virtual multiprocessor system.
Concurrent Clean provided lazy graph copying as the primary communication
mechanism. Both concurrent systems provided cannot easily provide type safety



between different programs or between multiple incarnations of a single program.
The same goes for values written to disk.

Another difference between Famke and the concurrent versions of Haskell
and Clean is the choice of communication primitives. Both lazy graph copying
and M-vars do not scale very well to a distributed setting because they require
distributed garbage collection. This issue has led to a distributed version of
Concurrent Haskell [8] that also uses ports, but it implementation does not
allow functions to be sent over ports.

Both Cooper [9] and Lin [10] have extended Standard ML with threads (im-
plemented as continuations using call/CC) to form a small functional operating
system. Both systems implement the basics needed for a stand-alone operating
system. However, both of them do not support type-safe communication of any
value between different computers.

The university of Utah [11] built two prototypes of a Java operating system.
Although they show that Java’s extensibility, portable byte code and static/dy-
namic type system provides a way to build an operating system where multiple
Java programs can safely run concurrently, Java (currently) lacks the power of
polymorphic and higher-order functions and closures (to allow laziness) that our
functional approach offers.

Haskell is an example of a pure and lazy functional programming language
that provides exception handling. In [12] support for asynchronous exceptions
has been added to Concurrent Haskell. Our implementation of signals follows
their approach closely.

The Scheme Shell [13] integrates a shell into the programming language in
order to enable the user to use the full expressiveness of Scheme. Es [14] is a
shell that supports higher-order functions and allows the user to construct new
functions at the command line. Neither shell provides a way to read and write
typed objects from and to disk, and they cannot provide our type safety because
they operate on untyped executables.

7 Conclusions and Future Work

In this paper, we presented a functional operating system interface, which could
be used as the kernel of a stand-alone strongly typed functional operating sys-
tem. We extended the lazy and pure functional programming language Clean
with lightweight threads, exceptions and heavyweight processes, provided a type
safe communication mechanism and we have built a typed interactive shell. With
the help of these mechanisms it becomes feasible to build distributed concurrent
Clean programs running on a heterogeneous network like the Internet. Never-
theless, there remain issues that need further research.

The current implementation of ports does not check if the name is truly
unique (when registering) or even exists (when looking up), entrusting this re-
sponsibility upon the programmer. The inability of Windows to detect mail slots
on other computers makes it hard to implement a more robust version of the
lookup function. Since we cannot be sure that the port exists, and is not too busy



to respond, we do not want to communicate with it to perform the dynamic type
check. This makes it possible to send a message of the wrong type. Fortunately,
this situation will be detected at run-time because it causes an exception at the
receiving end. However, we agree that it ought to be detected at the time of the
lookup. These problems might be solved by a smarter implementation of our
message passing system using some sort of handshake protocol.

The remote/join example in Sect. 4.2 contains a potential memory leak. The
port is not closed when the remote handle becomes garbage without the use of the
join function. This problem could be solved using finalizers, which unfortunately
are not supported by Clean.

We have done some preliminary research on adding lambda expressions to
the shell. In order to automatically derive the type of a lambda expression with
the help of the type representation contained within dynamics, we need support
for polymorphic types in the dynamic type system. There is work on progress
on adding support for polymorphic types to the dynamics implementation, but
we were not able to use it just yet. The focus of further research of the Famke
project will be increasing the power and usability of the shell.
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