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Abstract. SPARKLE is a new theorem prover written in and specialized
for the functional programming language CLEAN. It is mainly intended
to be used by programmers for proving properties of parts of programs,
combining programming and reasoning into one process. It can also be
used by logicians interested in proving properties of larger programs.
Two features of SPARKLE are in particular helpful for programmers.
Firstly, SPARKLE is integrated in CLEAN and has a semantics based on
lazy graph-rewriting. This allows reasoning to take place on the program
itself, rather than on a translation that uses different concepts. Secondly,
SPARKLE supports automated reasoning. Trivial goals will automatically
be discarded and suggestions will be given on more difficult goals.

This paper presents a small example proof built in SPARKLE. It will be
shown that building this proof is easy and requires little effort.

1 Introduction

It has often been stated that functional programming languages are well suited
for formal reasoning. In practice, however, there is little support for reasoning
about functional programs. Existing theorem provers, such as Pvs[10], CoQl[5]
and ISABELLE[12], do not support the full semantics of functional languages and
can only be used if the program is translated first, making them difficult to use.

Still, formal reasoning can be a useful tool for any programming language.
To make reasoning about programs written in the functional programming lan-
guage CLEANI6] feasible, SPARKLE was developed. Work on SPARKLE started
after a successful experiment with a restricted prototype[9]. SPARKLE is a semi-
automatic theorem prover that can be used to reason about any CLEAN-program.

SPARKLE supports all functional concepts and has a semantics based on lazy
graph-rewriting. It puts emphasis on tactics which are specifically useful for
reasoning about functional programs and automatically provides suggestions to
guide users in the reasoning process. SPARKLE is written in CLEAN; with approx-
imately 130.000 lines of source code (also counting libraries and comments) it is
one of the larger programs written in CLEAN. It has an extensive user interface
which was implemented using the Object I/0O library[1]. SPARKLE is prepared for
CLEAN 2.0 and will be integrated in the new IDE. Currently, SPARKLE is a stand-
alone application and can be downloaded at http://www.cs.kun.nl/Sparkle.



The ultimate goal of the project is to include formal reasoning in the pro-
gramming process, enabling programmers to easily state and prove properties of
parts of programs. This on-the-fly proving can only be accomplished if reasoning
requires little effort and time. This is already achieved by SPARKLE for smaller
programs, mainly due to the possibility to reason on source code level and the
support for automatic proving.

In this paper a global description of SPARKLE and its possibilities will be
presented. For this purpose a desired property of a small CLEAN-program will
be formulated. It will be shown that building a formal proof for this property is
very easy in SPARKLE. The specialized features of SPARKLE that in particular
assist programmers in building this proof will be highlighted.

The rest of this paper is structured as follows. First, the specification language
of SPARKLE will be introduced and the example program will be expressed in it.
A comparison with the specification languages of other theorem provers will be
made. Then, the logical language of SPARKLE is introduced and the property to
prove will be defined in it. Then, a detailed description is given of a proof for
this property in SPARKLE. Finally, after the conclusions and related work, an
appendix is given in which the tactics needed to build the proof are explained.

2 The specification language of SPARKLE

Although SPARKLE can be used to prove properties about arbitrary CLEAN-
programs, the reasoning process itself takes place on a simplified representation
of the CLEAN-program. In this section the CLEAN-program to reason about will
be presented and its simplification for SPARKLE will be described. Then, the
specification of functional programs in other theorem provers will be examined
and compared to SPARKLE.

2.1 The CLEAN-program

The proof that will be constructed in this paper relates the functions take and
drop by means of the function ++. These functions are defined in the standard
environment of CLEAN. For this proof, however, the definitions of take and drop
have been improved to handle negative arguments more consistently. The next
distribution of CLEAN will use the improved definitions.

take :: Int !'[a] -> [a] drop :: Int ![a]l -> [a]
take n [x:xs] drop n [x:xs]
| n<1 = [ |l n<1 = [x:xs]
| otherwise = [x:take (n-1) xs] | otherwise = drop (n-1) xs
take n [] drop n []
=[] =0
++ :: '[a] [a] —> [al - :: infixl 6 !Int !Int -> Int
++ [x:xs] ys - x y = code inline {subI}
= [x:xs++ys]
++ [1 ys < :: infix 4 !Int !Int -> Bool
= ys < x y = code inline {1tI}



These definitions are very straightforward, but it is important to take note
of the use of strictness. Because there is no exclamation mark in front of the
first argument type of take (or drop), the expression take L [] reduces to []
and not to L. Adding an exclamation mark would change this behavior. The
exclamation mark in front of the second argument of take (or drop), however,
is superfluous, because a pattern match is carried out on this argument.

The functions above also make use of several predefined concepts: the integer
type Int, the integer denotations 0 and 1, the list type [a], the nil constructor
[1 and the cons constructor [_:_]. Furthermore, the auxiliary functions - and
<, also from the standard environment of CLEAN, are defined in machine code.

2.2 Simplification for SPARKLE

Reasoning in SPARKLE takes place on CORE-CLEAN, which is a subset of CLEAN.
CORE-CLEAN is a simple functional programming language, basically containing
only application, sharing and case distinction. Its semantics is based on lazy
graph-rewriting and it supports strictness annotations. Reductions leading to an
error and non-terminating reductions are represented by the constant L.

SPARKLE automatically translates each CLEAN-program to CORE-CLEAN.
For this purpose functions from the source code of the new CLEAN-compiler
are used. These functions transform CLEAN to a variant of CORE-CLEAN which
is used internally in the compiler. Translating CLEAN to CORE-CLEAN is by
no means an easy task and would require a huge effort by hand. Using the real
compiler saves a lot of work and has an additional advantage as well: it is trivially
guaranteed that the translation preserves the semantics of the program.

The program to reason about is a very basic CLEAN-program and can be
expressed in CORE-CLEAN almost immediately. The only concept used that is
not supported by CORE-CLEAN is pattern matching. The patterns in the func-
tions therefore have to be transformed to case distinctions. The effect of this
translation is minimal and is further reduced by SPARKLE, which is able to hide
top-level case distinctions and present them as patterns.

The translation of predefined concepts is not a problem, because these are
also made available by CORE-CLEAN. The semantics of the representation of
numbers, however, is different. SPARKLE disregards overflow and rounding errors,
because these would complicate the reasoning process too much. Instead, an
idealized representation of numbers is assumed, resulting in an Int type without
bounds and a Real type without bounds and with infinite precision.

Translating delta rules, which are functions written in machine code, to
CORE-CLEAN is problematic, however. SPARKLE is not able to translate an ar-
bitrary delta rule to CORE-CLEAN. Instead, a fixed set of delta rules occurring
in the standard environment of CLEAN is recognized. The translation of recog-
nized delta rules is hard-coded in the theorem prover, usually by referring to
mathematical definitions working on idealized numbers. This is for example the
case for the subtract function from the example program.



2.3 Specification in other theorem provers

In order to reason about a program in a theorem prover, it must first be trans-
lated to its specification language, which is CORE-CLEAN for SPARKLE. This
language is a very important aspect of a theorem prover, because the reasoning
process takes place on the translated program in the specification language.

programining language

[ program ]
=

ﬁsﬂaﬁon
specification language /

[ program ] [ proof ]

/

reasoning

Fig. 1. Reasoning takes place in the specification language

For effective reasoning, a good understanding of the translated program is
required. Programmers usually understand the programs they write very well,
but this may not be the case for the translated version. If the differences are too
big, knowledge of the original program is completely lost and proving will be
a lot more difficult. Moreover, a new specification language must be mastered.
These obstacles will likely lead to programmers giving up on formal reasoning.

Unfortunately, there is still a big gap between an executable (programming)
language which is useful in practice and a formal (specification) language which is
useful in theory. Differences between the specification language and the program-
ming language are inevitable. The following differences can be distinguished, in
decreasing order of importance:

1. Differences in semantics. These are quite serious, because understanding
the translated program may become very difficult. Firstly, the concepts in
the specification language may not be known to the programmer. Secondly,
the relation between the original program and its translation may be lost,
making it difficult to re-use the expertise of the original program.

2. Differences in notational expressivity. Sometimes complicated concepts have
to be translated to simpler ones, such as translating notational sugar to
ordinary function applications. These differences can again make it difficult
to relate the translated program to the original program.

3. Differences in syntaz. These are not so serious and can often be solved easily.
However, it can still be very annoying to programmers.

The specification languages of existing theorem provers are very powerful but
score badly on the points mentioned above. Most importantly, there are usually



many differences in semantics. For instance, COQ supports both reasoning about
finite (inductive) and infinite (co-inductive) objects, but these objects can not
be combined into one datatype. Strictness annotations are not supported by any
existing theorem prover. Writing a translation from CLEAN to for instance the
specification language of Pvs would require a huge effort and may in fact be as
difficult as developing a new theorem prover.

All in all, using an existing theorem prover to reason about CLEAN-programs
is very problematic for programmers.

2.4 Suitability of CORE-CLEAN for reasoning about CLEAN

Reasoning in SPARKLE takes place on CORE-CLEAN, which is not a new language
but only a subset of CLEAN:

specification langiage < programming language

transiation
[[ program ]p [ proof ]

/

reasoning

Fig. 2. Reasoning takes place in a subset of the programming language

In contrast to the specification language of other theorem provers, CORE-
CLEAN is very similar to CLEAN. There will not be many differences between a
CLEAN-program and its simplification in CORE-CLEAN:

1. Semantics. CORE-CLEAN borrows its semantics from CLEAN[2], using a lazy
term-graph rewriting system to reduce expressions. All programs written in
CORE-CLEAN are valid CLEAN as well and will therefore easily be understood
by experienced CLEAN-programmers. The only difference in semantics lies
in the handling of numbers. This is only a problem for programs in which
overflow or rounding occurs. If one wants to reason about these programs, a
different representation of numbers must be chosen.

2. Concepts. In CORE-CLEAN all basic constructs of CLEAN are available. No-
tational sugar is translated to these basic concepts, including pattern match-
ing (translated to case distinctions), overloading (translated to dictionaries),
dot-dot-expressions (translated to functions) and comprehensions (trans-
lated to functions). The translated versions are usually recognized and un-
derstood easily by programmers, because they are not that different. There
is, however, one exception: the translation of comprehensions to functions is
not transparent at all. The functions created here are hard to understand
and almost impossible to relate to the original program.

3. Syntax. CORE-CLEAN uses the same syntax as CLEAN.

Due to these similarities, CORE-CLEAN is a good specification language for
reasoning about CLEAN-programs. The translation of comprehensions is, how-



ever, still problematic. This could be solved by using a different translation-
scheme or by interpreting comprehensions; further investigation is required here.

3 The specification of the property

Properties can be specified in SPARKLE using a simple first-order propositional
logic which is extended with equalities on expressions. The logical connectives
-, =, A, V, ¢ and the quantors V, 3 are available. Quantification, either existen-
tial or universal, is possible over propositions and expressions of an arbitrary
type. Predicates and quantification over predicates are not allowed.

A standard semantics for propositional logics is used. The semantics of the
equality on expressions is defined using the operational reduction semantics of
CLEAN. Two expressions are equal if for all reductions of one expression there
exists a reduction of the other expression that produces the same constructors
and basic values (and possibly more). This semantics covers both the equality
between finite and infinite structures.

SPARKLE offers the following features to make the specification of properties
as easy as possible:

— The same syntax may be used as in CLEAN, meaning that infix applications
are allowed and no superfluous brackets have to be supplied.

— Top-level universal quantors may be omitted. For each free variable in the
proposition, a top-level universal quantor will automatically be created by
SPARKLE.

— It is optional to specify the types of the variables in a V or 3. If the type is
left out, it will be inferred by the theorem prover. The property will always
be type-checked.

— Quantification over type-variables is implicit and must not be specified.
Properties will always be interpreted as polymorphic as possible.

The property that is going to be proved in this paper relates the functions
take and drop. Using the described features it can be specified as follows:

take n xs ++ drop n s = xs

There is, however, a problem with this property. If n = L and zs = [7], the
left-hand-side of the equation will reduce to L while the right-hand-side is [7].
These kind of problems with undefined expressions occur frequently and can be
very hard to detect beforehand. They will always be revealed in the reasoning
process, though. An easy solution is to simply demand that n is always defined:

n# L — take n xs ++ drop n s = x$

This property contains two free variables, n and zs, for which universal quan-
tors will be created automatically by SPARKLE. The type of n will be inferred as
Int and the type of zs will be inferred as [a]. A universal quantor for the type
variable a will be omitted. This results in the following property, which will be
the starting point of the proof:

VnemtVase[a][n # L — take n xs ++ drop n 25 = 28]



4 Building the proof

In this section the process of building a proof for the given property in SPARKLE
will be described. Before the proof itself is given, the reasoning style of SPARKLE
(how proofs are constructed) and its hint mechanism (a mechanism to assist
users in building proofs) will be explained.

4.1 Reasoning style in SPARKLE

Reasoning in SPARKLE is similar to reasoning in other theorem provers and con-
sists of the repeated application of tactics on goals until all goals are discarded.

A goal is a property that still has to be proven. Each goal is associated with
a goal context. In a goal context variables are declared and local hypotheses
are stored. The proof state consists of a list of goals. The active goal being
manipulated is called the current goal; the others are called subgoals. Changing
the active goal is always allowed.

A tactic is a function from a single goal to a list of goals. Applying a tactic
on the current goal will lead to a new proof state, which consists of the created
goals and the old subgoals. All tactics must be sound with respect to semantics,
meaning that the validity of the created goals must logically imply the validity
of the original goal.

SPARKLE implements a total of 42 tactics. Although all of these tactics
can also be found, or expressed, in other theorem provers, their behavior is
specifically geared towards proving properties of lazy functional programs. The
Induction tactic, for example, can only be applied to admissible propositions
(see [11]) and is valid for both finite and infinite structures.

A proof of the example property can be constructed using a subset consisting
of eight tactics, which are: (1)Contradiction(proof by contradiction); (2)De-
finedness(use absurd hypotheses concerning 1); (3)Induction(structural in-
duction); (4)Introduce(elimination of V and —); (5)Reduce(reduction to root-
normal-form); (6)Reflexive(prove reflexive equality); (7)Rewrite(rewrite ac-
cording to a hypothesis); (8)SplitCase(case distinction). See the appendix for
a more detailed description of these tactics.

4.2 The hint mechanism

Successfully building a proof in SPARKLE depends on the selection of the right
tactics. For this, knowledge of the available tactics and their effect is needed,
as well as expertise in proving. To make the selection of tactics easier, a hint
mechanism is available in SPARKLE.

The hint mechanism is activated each time the current goal changes. It auto-
matically produces a list of applicable tactics. Based on built-in heuristics only
the most important applicable tactics are suggested. Each tactic is assigned a
score between 1 and 100 that indicates the likelihood of that tactic being helpful
in the proof. A score of 100 is reserved for tactics that prove the current goal in
one step. The assignment of scores to tactics is hard-coded in SPARKLE.



The hint mechanism is a valuable tool, especially for those with little ex-
pertise in proving. However, it is by no means a failsafe feature. Sometimes the
right tactic is not suggested or several wrong tactics get high scores. Program-
mers can use the mechanism to their advantage but should not completely rely
on it. Future work will concentrate on improving the hint mechanism.

On top of making users aware of useful applicable tactics, there are two
additional advantages offered by the hint mechanism:

1. Suggested tactics are assigned a hot-key and can be applied instantly. This
reduces the typing (or clicking) effort for building proofs considerably.

2. A threshold for automatic application can be set. If the best applicable tactic
has a score higher than this threshold, it will be applied automatically. This
process continues until no tactic with a high enough score can be found. A
low threshold can be used for automatic proving; a medium threshold for
semi-automatic proving and a high threshold for manual proving.

4.3 Proof of the example program

In this subsection a proof of the example property built with SPARKLE will be
presented. The description will focus on the goals that have to be proved. At
each goal, a tactic to be applied is chosen. An argument for this choice will be
given. The description then continues with the first goal that is created; if several
goals are created, they will be proved later. The order in which the goals are
proved is the same as in SPARKLE. (to be more precise: all unproved goals are
stored in a proof tree, which is traversed from left to right and top-down). A
numbering system is used to keep track of the goals.

The initial goal is simply the property to be proven. It has an empty context.

(1)

VnemtVasepa)[t # L — take n xs ++ drop n xs = x3]

Because of the definitions of take and drop, which are tail-recursive in the list
argument, structural induction on zs is likely to be useful here. This is accom-
plished by applying the tactic . Three new goals(1.1,1.2,1.3) are
created: one for the case that zs is L; one for the case that zs is [| and one for
the case that zs is a non-empty list. Note that L is treated as a constructor for
all algebraic types; therefore induction creates three new goals instead of two.

Vnelnt[n # 1 — taken L ++dropn L = J_]

(1.1)

The goal context is used to store introduced variables and hypotheses. It is ac-
tually just a prettier representation of a chain of V’s and—’s, which allows the
reasoning to focus on the interesting part of the goal. Another induction is not
needed in the current goal. The variable n and the hypothesis n # L can there-
fore safely be moved to the goal context using the tactic | Introduce n H1].




n € Int
Hil:n# L (1.1
taken L ++dropn L = L

Due to the strictness of take and ++ and the presence of L arguments, redexes
are present in the current goal. The tactic [Reduce NF All] can be used to
reduce all redexes in the current goal to normal form (eager reduction). With
other parameters, the tactic Reduce can also be used for stepwise reduction, lazy
reduction, reduction of one particular redex and reduction in the goal context.

n € Int
Hi:n# 1 |(1.1")
1=1

This is clearly a trivial goal, because equality is a reflexive relation. Such reflexive

equalities are proved immediately with the tactic [Reflexive|.

Vnem[n # 1 — take n [] ++ drop n [] = []]

(1.2)

This is the second case of the induction, created for the case that zs = []. Again,
introduction in the context should be done first: | Introduce n H1|.

n € Int
Hil:n# L (1.2)
take n [| ++ drop n [| = [|

There are again redexes present in the current goal, due to the pattern matching
performed by take and drop. Therefore: | Reduce NF All |

n € Int
Hl:n# L |(1.2")
0=

This is another example of a reflexive equality; therefore | Reflexive|.

VmEansE[a][ (13)
Vneme[n # L — take n xs ++ drop n xs = x|
— Vnems[n # L — take n [r:xs] ++ drop n [z:xs] = [z:xs] ]]

This is the third goal created by the induction; the induction step. The current
goal looks quite complicated, but introduction can make things a lot clearer. For
reasons of clarity, the first hypothesis will be called IH (induction hypothesis)
and the variable n will be introduced as m (to avoid name conflicts with the n
already present in the induction hypothesis): | Introduce x xs IH m H1 |




x € a,xs € [a],m € Int
IH: Vhoemi[n # L — take n xs ++ drop n zs = x|
Hl:m# L
take m [z:xs] ++ drop m [z:xs] = [z:xs]

(1.3)

Again, the current goal contains redexes that can be removed by applying the
tactic |[Reduce NF A11| Note that a lazy reduction (to root-normal-form) will
not suffice here, because ++ is lazy in its second argument and therefore drop m
[z:zs] as a whole will not be reduced at all.

Z € a,rs € [a],m € Int
IH: Vacimt[n # L — take n xs ++ drop n zs = x|

Hl: m# L
case (m < 1) of case (m < 1) of
< True =] >++< True — [z:zs] ): [z:zs]
default — [z:take (m-1) zs] default — drop (m-1) zs

(This proof state is also shown in Fig. 3.)

The natural next step is a case distinction on m < 1, because that will allow the
reduction of both case-expressions in the current goal. A special tactic is used for
this purpose: . This tactic will examine the first case-expression
in the current goal. Three cases are distinguished: (1) L (for when m < 1 can
not be properly evaluated); (2) True (for the first alternative); (3) False (for
the default alternative). For each case a new goal(1.3.1,1.3.2,1.3.3) is created, in
which the appropriate alternatives of the case-expressions are chosen. Also, in
each goal hypotheses are introduced to reflect the case chosen.

x € a,xs € [a],m € Int
IH: Vycmi[n # L — take n zs ++ drop n xs = xs]
Hl:m# L1 (1.3.1)
H2: (m<1)=1
L ++ L = [zs]

This is the goal created by SplitCase for the case that m < 1 = L. This goal
can be proved in one step, because hypotheses H1 and H2 are contradictory.
This is due to the totality of <, which ensures that z < y can only be L if either
x = L or y = L. Hypothesis H2 states that m < 1 = 1, thus either m = L
or 1 = L. Of course, 1 = L is not true, thus from hypothesis H2 it may be
concluded that m = L. This contradicts with hypothesis Hl. In SPARKLE, a
specialized tactic is available to handle these cases: . This tactic
searches for expressions (most notably, variables) that are defined (known to be
unequal to 1) and expressions that are undefined (known to be equal to L).
The analysis makes use of the hypotheses, the ordinary strictness information
of functions and the totality of functions such as — and <. If an expression is
found which is both defined and undefined, the goal is proved by contradiction.
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Fig. 3. The theorem prover in action

z € a,xs € [a],m € Int
IH: V,[n # L — take n xs ++ drop n zs = zs]
Hil:m# L1 (1.3.3)
H2: (m < 1) = True
[] ++ [x:xs] = [z:x8]

This is the goal created by SplitCase for the case that m < 1 = True. The
appropriate case alternatives have been chosen and the resulting goal is clearly
a trivial one. It can be proved by a reduction followed by an application of
Reflexive. These two can be combined by | Reduce NF All; Reflexive |

z € a,xs € [a],m € Int
IH: V,cme[n # L — take n zs ++ drop n zs = xs]
Hil:m# L1 (1.3.3)
H2: (m < 1) = False
[z:take (m-1) xs] ++ drop (m-1) zs = [z:zs]

This is the goal created by SplitCase for the case that m < 1 = False. Filling
in the proper case alternatives has resulted in a goal which contains a redex (++
can be reduced); therefore: |[Reduce NF A11].




x € a,xs € [a],m € Int
IH: Vhpemi[n # L — take n xs ++ drop n ©s = zs]
Hl: m# L (1.3.3")
H2: (m < 1) = False
[z:take (m-1) xs ++ drop (m-1) zs] = [z:xs]

In this goal it is finally possible to use the induction hypothesis, using (m—1) as
value for n. This results in the substitution of take (m—1) zs ++ drop (m—1)
xs by zs in the current goal. This is accomplished in SPARKLE by the tactic
. This tactic will create two new goals, one for the goal after sub-
stitution (1.3.3.1) and one for the condition m—1# 1 (1.3.3.2).

T € a,xs € [a],m € Int
IH: Vpocmt[n # L — take n zs ++ drop n zs = xs]

Hil: m# 1 (1.3.3.1)
H2: (m < 1) = False
[z:zs] = [z:2s]

This trivial goal is proved immediately by .

x € a,xs € [a],m € Int
IH: Vycmi[n # L — take n zs ++ drop n zs = xs]

Hl:m# L1 (1.3.3.2)
H2: (m < 1) = False
m D £ L

This goal is proved by contradiction: the negation of the current goal will lead
to an absurd situation. This action is performed by the tactic | Contradiction|,
which creates a hypothesis that is the negation of the current goal and replaces
the current goal by the proposition False.

x € a,zs € [a],m € Int
IH: Vycmi[n # L — take n xs ++ drop n s = x|
Hl: m# L
H2: (m < 1) = False
H3: (m—-1)=1
False

(1.3.3.2")

This goal is similar to goal 1.3.1. Here, a contradiction can be found by ex-
amining hypotheses H1 and H3 and using the totality of —. An application of
will therefore prove the current goal and finish the proof!

4.4 Remarks concerning the reasoning process

The presented proof was not difficult to build. An examination of the current
goal always resulted in a tactic to apply; no overview of the proof as a whole



was ever required. This actually turns out to be the case for many small proofs
about functional programs.

The hint mechanism is especially useful for building such ‘goal-directed’
proofs. In fact, all steps in the presented proof were given as hints by SPARKLE.
Building the proof is therefore reduced to selecting hints, which is a lot easier
than selecting tactics, simply because there are far less options to choose from.
Right now, there are 42 different tactics which can have arguments as well,
whereas there are typically less than 15 hints given for a small-sized goal.

Automatic proving is possible in SPARKLE by letting it automatically apply
the hint with the highest score. The example property can be proved automatically
with the hint mechanism. Of course, larger and more difficult proofs can not be
built automatically, although often suggestions given by SPARKLE can be used
successfully. Further improving the hint mechanism will be one of the spearheads
in the further development of SPARKLE.

A proof of (almost) the same property is also presented in Bird’s Introduction
to Functional Programming[3]. The proof presented there only takes positive
integer arguments into account, but is otherwise quite similar. Note that building
such a formal proof with the aid of a theorem prover is much easier than doing it
on paper. In [3], a lot of proofs of properties about functional programs are given.
A lot of these proofs (about 80%) have already been translated to SPARKLE
without difficulties. No problems are expected for translating the others.

5 Conclusions and further work

Building the proof required little effort and little expertise. The proving action

could always be found by examining the current goal and following a few ground

rules. The theorem prover is able to follow these same ground rules and suggest

the correct tactics to users, reducing the required expertise even more. All in all,

a programmer can build this proof in a short time and without many difficulties.
The two features of SPARKLE that contribute the most to this are:

— The possibility to reason about the source program. Starting with proving
is trivial: state what you want to prove and run the theorem prover.

— The hint mechanism. Selecting suggested hints is very easy. An application
of a hint can easily be undone, making playing with hints possible. This is
not only a fast way of learning how to use the system, but also a fast way
of actually constructing the proof.

There are, however, lots of things that still need to be done. Although
SPARKLE can already be used to build proofs, it is by no means finished. For
instance, documentation must still be added to the system. Furthermore, the
hint mechanism must be compared to the automatic reasoning abilities of other
theorem provers and possibilities to improve the mechanism must be researched.

Also, work needs to be done on the formal framework of the theorem prover.
The effect of the tactics must be described formally in this framework and their
soundness with respect to the semantics of CLEAN must be proved. Of particular
importance is the soundness of Induction for all lazy structures.



6 Related work

In many textbooks (for instance [3]) properties about functional programs are
proved by hand. Also, several articles (for instance [4]) make use of reasoning
about functional programs. It seems worthwhile to attempt to formalize these
proofs in SPARKLE. In programming practice, however, reasoning about func-
tional programs is scarcely used.

Widely used generic theorem provers are Pvs[10], CoQ[5] and ISABELLE[12].
They are not tailored towards a specific programming language. Reasoning in
these provers requires using a syntax and semantics that are different from the
ones used in the programming language. For instance, strictness annotations
as in CLEAN are not supported by any existing theorem prover. This makes it
rather hard for a programmer to use. On the other hand, these well established
theorem provers offer features that are not available in SPARKLE. Most notably,
the tactic language and the logic are much richer than in SPARKLE.

Somewhat closer related work is described in [8], in which a description is
given of a proof tool which is dedicated to HASKELL[13]. It supports a subset of
HASKELL and needs no guidance of users in the proving process. The user can
however not manipulate a proof state by the use of tactics to help the prover
in constructing a proof, and induction is only applied when the corresponding
quantifier has been explicitly marked in advance.

Further related work concerns a proof tool specialized for HASKELL, called
ERrA, which stands for Equational Reasoning Assistant. This proof tool is still
in development, although a working prototype is available. ERA, however, is
intended to be used for equational reasoning, and not for theorem proving in
general. Additional proving methods, including induction or any logical tactics,
are not supported. ERA is a stand-alone application.

Another theorem prover which is dedicated to a functional programming
language is EvT[7], the Erlang Verification Tool. It differs from SPARKLE be-
cause ERLANG is a strict, untyped language which is mainly used for developing
distributed applications. EvT has been applied in practice to larger examples.

We do not know of any other theorem prover than SPARKLE that is inte-
grated, tailored towards a lazy functional language and semi-automatic.
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A A short description of 8 tactics (appendix)

This appendix provides a short description of the tactics used in the example
proof. In this description the following categorization of tactics is used:

Safe/Unsafe - A tactic is safe if its inverse is also a valid tactic. This can only
be the case if the created goals are logically equivalent to the original goal,
whereas an unsafe tactic creates goals which are logically stronger.

Forwards/Backwards - Forwards reasoning brings hypotheses closer to the cur-
rent goal (top-down), while backwards reasoning brings the current goal
closer to the hypotheses (bottom-up).

Instantaneous - An instantaneous tactic proves a goal in one single step. Such
a tactic will not be categorized as safe/unsafe or forwards/backwards.

Programming/Logic - Logic tactics are based on the semantics of the logical
connectives. Programming tactics are based on the semantics of CLEAN.

|Contradiction. |
Type: Safe; backwards; logic.

Info: Builds a proof by contradiction.

Effect: Replaces the current goal by the absurd proposition False and adds its
negation as a hypothesis in the context. If a double negation is produced, it will




be removed automatically.
Example: xs b xs ++ [| # s
— Contradiction —
(1) zs, (zs ++[] = zs) - False

|Definedness. |
Type: Instantaneous; logic.
Info: Determines two sets of expressions: (1) the set of defined expressions,
which are expressions that are unequal to L; (2) the set of undefined expres-
sions, which are expressions that are equal to L. These sets are determined by
examining equalities in hypotheses and using strictness information. In addition,
the totality of certain predefined functions is used.
Effect: If an expression is found that is both defined and undefined, the goal is
proved instantaneously. Otherwise nothing happens.
Example: xs,Ys, 28, (s = 1), (xs ++ ys = [l:zs]) + False

— Definedness —

O

|Induction <variable>. |
Type: Unsafe; backwards; programming.
Info: Performs structural induction on a variable. A goal is created for each
root-normal-form the variable may have, including L. The type of the variable
must be Int, Bool or algebraic. The root-normal-forms of an algebraic type are
determined by its constructors.
Effect: In each created goal the variable is replaced by its root-normal-form.
Universal quantors are created for new variables. Additionally, induction hy-
potheses are added (as implications) for all recursive variables.
Example: F Vas[zs ++ [ = 5]

—> Induction xs —

() FL++]=1L

@) Fl+[0=1[

(3) F VyVgs[zs ++ [| = zs — [zizs] ++ [| = [z:2s]]

| Introduce <name(1)> <name(2)> ... <name(n)>. |
Type: Safe; backwards; logic.
Info: Moves as many universally quantified variables and hypotheses to the goal
context as there are names given.
Effect: The current goal must be of the form V,, ...V, [PL = ... Py, = @],
where a + b = n. The quantors and implications may be mixed. The variables
Z1 . ..2x, and the hypotheses P ... P, are deleted from the current goal and are
added to the goal context using the names given.
Example: FVYele =T Vyy=7—2z=y]

— Introduce p H1 q H2 =

(1) pyg, Hl: p=T),(H2: q=T) Fp=¢
|Reduce NF All.
Type: Safe; backwards; programming.
Info: Reduces all expressions in the current goal to normal form. This is accom-




plished by a reduction to root-normal-form, followed by the recursive reduction
to normal form of all top-level lazy arguments. The functional reduction strategy
is used. An artificial limit on the maximum number of reduction steps is imposed
in order to safely handle non-terminating reductions. Replacing the NF by RNF
results in reduction to root-normal-form only.
Effect: All redexes are replaced by their reducts.
Example: Z,x8,Y8, 28 b [r:xs] ++ ys = reverse zs

— Reduce NF All —

(1) z,zs,ys,2s b [z: s ++ ys] = reverse zs

|Ref1exive. |
Type: Instantaneous; logic.
Info: Proves any reflexive equality instantaneously.
Effect: Proves any goal of the form E = E. Additional quantors and implica-
tions are allowed in front of the equality.
Example: F Vas3ys[xs = ys = xs ++ ys = xs ++ ys]

—> Reflexive —

O

|Rewrite <hypothesis>. |
Type: Safe; backwards/forwards; logic.
Info: Rewrites the current goal using an equality in a hypothesis.
Effect: The hypothesis must be of the form V,, ...V, [P — ... Py — Ey = E»].
For all substitutions Z} = €; such that E[Z] := e_Z] occurs in the current goal,
E, [T} := €] is replaced by E;[Z} := €{]. Variables in the context are treated as
constants. Additionally, goals are created for all conditions P; ... P,,.
Example: xzs, (Hl: zs =[|) b xs ++ s = xs

—> Rewrite H1 —

(1) as, (H:ws =) F [ ++ [ =

|Sp1itCase <number>. |
Type: Unsafe; backwards; programming.
Info: Performs a case distinction based on the case-expression in the current
goal that is indicated by the argument number. For each alternative a goal will
be created. Two goals are always created: (1) for the case that evaluation of
the condition produces an error; (2) for the case that no alternative matches
(replaced by the default alternative if one is available).
Effect: In each created goal, the case-expression is replaced by the result of the
alternative chosen (or L for the erroneous case). Hypotheses are introduced in
the context to reflect which alternative was chosen. The goal for the default al-
ternative is optimized: a negation of all other alternatives is transformed to an
ordinary alternative if possible.
Example: zs F (case zs of [y:ys] — y; default — 12) =0

—> SplitCase 1 =

(1) zs, (zs=L)F L =0

(2) @s,y,ys, (xs =[yys)) Fy=0

(3) zs, (xs=[))F12=0




