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Abstract. Generic programming enables the programmer to define func-
tions by induction on the structure of types. Defined once, such a generic
function can be used to generate a specialized function for any user de-
fined data type. Several ways to support generic programming in func-
tional languages have been proposed, each with its own pros and cons. In
this paper we describe a combination of two existing approaches, which
has the advantages of both of them. In our approach overloaded func-
tions with class variables of an arbitrary kind can be defined generically.
A single generic definition defines a kind-indexed family of overloaded
functions, one for each kind. For instance, the generic mapping function
generates an overloaded mapping function for each kind.
Additionally, we propose a separate extension that allows to specify a
customized instance of a generic function for a type in terms of the
generated instance for that type.

1 Introduction

The standard library of a programming language normally defines functions like
equality, pretty printers and parsers for standard data types. For each new user
defined data type the programmer often has to provide similar functions for that
data type. This is a monotone, error-prone and boring work that can take lots
of time. Moreover, when such a data type is changed, the functions for that
data type have to be changed as well. Generic programming enables the user
to define a function once and specialize it to the data types he or she needs.
The idea of generic programming is to define the functions by induction on
the structure of types. This idea is based on the fact that a data type in many
functional programming languages, including Clean, can be represented as a sum
of products of types.

In this paper we present a design and implementation of a generic extension
for Clean. Our work is mainly based on two other designs. The first is the generic
extension for Glasgow Haskell, described by Hinze and Peyton Jones in [1]. The
main idea is to automatically generate methods of a type class, e.g. equality.
Thus, the user can define overloaded functions generically. The main limitation
of this design is that it only supports type classes, whose class variables range
over types of kind ?.

The second design described by Hinze in [2] is the one used in the Generic
Haskell Prototype. In this approach generic functions have so-called kind-indexed



types. The approach works for any kind but the design does not provide a way
to define overloaded functions generically.

The design presented here combines the benefits of the kind-indexed approach
with those of overloading. Our contributions are:

– We propose a generic programming extension for Clean that allows for kind-
indexed families of overloaded functions defined generically. A generic defini-
tion produces overloaded functions with class variables of any kind (though
current implementation is limited to the second-order kind).

– We propose an additional extension, customized instances, that allows to
specify a customized instance of a generic function for a type in terms of the
generated instance for that type.

The paper is organized as follows. Section 2 gives an introduction to generic
programming by means of examples. In Section 3 our approach is described. We
show examples in Generic Clean and their translation to non-generic Clean. In
section 4 we discuss the implementation in more detail. In section 5 we describe
customized instances. Finally, we discuss related work and conclude.

2 Generic Programming

In this section we give a short and informal introduction to generic programming
by example. First we define a couple of functions using type constructor classes.
Then we discuss how these examples can be defined generically.

2.1 Type Constructor Classes

This subsection demonstrates how the equality function and the mapping func-
tion can be defined using overloading. These examples are the base for the rest
of the paper. We will define the functions for the following data types:

:: List a = Nil | Cons a (List a)
:: Tree a b = Tip a | Bin b (Tree a b) (Tree a b)

The overloaded equality function for these data types can be defined in Clean
as follows:

class eq t :: t t → Bool
instance eq (List a) | eq a where

eq Nil Nil = True
eq (Cons x xs) (Cons y ys) = eq x y && eq xs ys
eq x y = False

instance eq (Tree a b) | eq a & eq b where
eq (Tip x) (Tip y) = eq x y
eq (Bin x lxs rxs) (Bin y lys rys) = eq x y && eq lxs lys && eq rxs rys
eq x y = False



All these instances have one thing in common: they check that the data con-
structors of both compared objects are the same and that all the arguments of
these constructors are equal. Note also that the context restrictions are needed
for all the type arguments, because we call the equality functions for these types.

Another example of a type constructor class is the mapping function:

class fmap t :: (a → b) (t a) → (t b)
instance fmap List where

fmap f Nil = Nil
fmap f (Cons x xs) = Cons (f x) (fmap f xs)

The class variable of this class ranges over types of kind ? → ?. In contrast, the
class variable of equality ranges over types of kind ?. The tree type has kind
? → ? → ?. The mapping for a type of this kind takes two functions: one for
each type argument.

class bimap t :: (a → b) (c → d) (t a c) → (t b d)
instance bimap Tree where

bimap fx fy (Tip x) = Tip (fx x)
bimap fx fy (Bin y ls rs) = Bin (fy y) (bimap fx fy ls) (bimap fx fy rs)

In general the mapping function for a type of arity n, takes n functions: one
for each type argument. In particular, the mapping function for types of kind ?
is the identity function. This remark is important for section 3 where we define
a mapping function for types of all kinds.

2.2 Generic Classes

In this subsection we show how to define the equality function generically, i.e.
by induction on the structure of types. The user provides the generic definition
of equality once. This definition can be used to produce the equality function for
any specific data type. The approach described in this subsection assumes only
generic definitions for classes, whose class variables range over types of kind ?.
This is the approach described by Peyton Jones and Hinze in [1]. We present it
here for didactic reasons. In the next section we will present our approach, based
on Hinze’s kind-indexed types [2], which does not have the limitation of kind ?.

The structure of a data type can be represented as a sum of products of
types. For instance, a Clean data type

:: T a1 ... an = K1 t11 ... t1l1 | ... |Km tm1 ... tmlm

can be regarded as

T◦ a1 ... an = (t11 × . . .× t1l1) + . . . + (tm1 × . . .× tmlm)

List and Tree from the previous section can be represented as

List◦ a = 1 + a × (List a)
Tree◦ a b = a + b × (Tree a b) × (Tree a b)



To encode such a representation in Clean we use the following types for binary
sums and products.

:: UNIT = UNIT
:: PAIR a b = PAIR a b
:: EITHER l r = LEFT l | RIGHT r

N-ary sums and products can be represented as nested binary sums and products.
The UNIT type is used to represent the product of zero elements, the EITHER
type is a binary sum and the PAIR type is a binary product. With these types
List◦ and Tree◦ can be represented as (in Clean a synonym type is introduced
with :==)

:: List◦ a :== EITHER UNIT (PAIR a (List a))
:: Tree◦ a b :== EITHER a (PAIR b (PAIR (Tree a b) (Tree a b)))

Note that these types are not recursive. For instance, the right hand side of
List◦ refers to the plain List rather than to List◦. So, the encoding affects only
the “top-level” of a type definition. The recursive occurrences of List type are
converted to List◦ “lazily”. In this way it is easy to handle mutually recursive
types (see [1]).

We need conversion functions to convert between a data type T and its
generic representation T ◦. For example, the conversion functions for lists are

fromList :: (List a) → List◦ a
fromList Nil = LEFT UNIT
fromList (Cons x xs) = RIGHT (PAIR x xs)
toList :: (List◦ a) → List a
toList (LEFT UNIT) = Nil
toList (RIGHT (PAIR x xs)) = Cons x xs

Now we are ready to define the equality generically. All the programmer has
to do is to specify the instances for unit, sum, product and primitive types.

class eq t :: t t → Bool
instance eq Int where

eq x y = eqInt x y
instance eq UNIT where

eq UNIT UNIT = True
instance eq (PAIR a b) | eq a & eq b where

eq (PAIR x1 x2) (PAIR y1 y2) = eq x1 y1 && eq x2 y2
instance eq (EITHER a b) | eq a & eq b where

eq (LEFT x) (LEFT y) = eq x y
eq (RIGHT x) (RIGHT y) = eq x y
eq x y = False

This definition is enough to produce the equality functions for almost all data
types: an object of a data type can be (automatically) converted to the generic
representation using the conversion functions and the generic representations



can be compared using the instances above. The integers are compared with the
predefined function eqInt. We use integers as the only representative of primi-
tive types. Other primitive types can be handled analogously. The UNIT type
has only one inhabitant; the equality always return True. Pairs are compared
component-wise. Binary sums are equal only when the constructors are equal
and their arguments are equal. In general a data types may involve arrows. To
handle such data types the user has to provide an instance on the arrow type
(→). Since equality cannot be sensibly defined for arrows, we have omitted the
instance: comparing types containing arrows will result in a compile time over-
loading error.

These definitions can be used to produce instances for almost all data types.
For instance, when the programmer wants the equality functions to be generated
for lists and trees, (s)he specifies the following

instance eq (List a) generic
instance eq (Tree a b) generic

These definitions can be used to generate the following instances:

instance eq (List a) | eq a where
eq x y = eq (fromList x) (fromList y)

instance eq (Tree a b) | eq a & eq b where
eq x y = eq (fromTree x) (fromTree y)

So, we can implement the equality on arbitrary types using the equality on
their generic representations. It is important to note that the way we convert
the arguments and the results to and from the generic representation depends
on the type of the generic function. The compiler generates these conversions
automatically as described in section 4.4.

When we try to use the same approach to define fmap generically, we have
a problem. The type language has to be extended for lambda abstractions on
the type level. See [3] for details. Another problem is that we need to provide
different mapping functions for different kinds: like fmap for kind ? → ?, bimap
for kind ? → ? → ? and so on. Both of these problems are solved by the approach
with kind-indexed types [2]. In our design, described in the following section, we
use this approach in combination with type constructor classes.

3 Generics in Clean

In this section we show how generic functions can be defined and used in Clean.
We use the mapping function as an example. To define the generic mapping
function we write

generic map a1 a2 :: a1 → a2

instance map Int where
map x = x

instance map UNIT where



map x = x
instance map PAIR where

map mapx mapy (PAIR x y) = PAIR (mapx x) (mapy y)
instance map EITHER where

map mapl mapr (LEFT x) = LEFT (mapl x)
map mapl mapr (RIGHT x) = RIGHT (mapr x)

The generic definition introduces the type of the generic function. The in-
stance definitions provide the mapping for the primitive types, UNIT, PAIR
and EITHER.

The reader has probably noticed that the instances do not seem to “fit”
together: they take a different number arguments. The function for integers
takes no additional arguments, only the integer itself. Similarly, the function for
UNIT takes only the UNIT argument; mapping for types of kind ? is the identity
function. The functions for EITHER and PAIR take two additional arguments;
mapping for types of kind ? → ? → ? needs two additional arguments: one for
each type argument. The generic definition is actually a template that generates
an infinite set of mapping classes, one class per kind. So, using the definition
above we have defined

class map? t :: t → t
class map?→? t :: (a1 → a2) (t a1) → (t a2)
class map?→?→? t :: (a1 → a2) (b1 → b2) (t a1 b1) → (t a2 b2)
...

The class for kind ? has the type of the identity function. The other two classes
are renamings of fmap and bimap class from the previous section. The instances
are bound to the classes according to the kind of the instance type.

instance map? Int where
map? x = x

instance map? UNIT where
map? x = x

instance map?→?→? PAIR where
map?→?→? mapx mapy (PAIR x y) = PAIR (mapx x) (mapy y)

instance map?→?→? EITHER where
map?→?→? mapl mapr (LEFT x) = LEFT (mapl x)
map?→?→? mapl mapr (RIGHT x) = RIGHT (mapr x)

The programmer does not have to write the kind indexes, they are assigned
automatically by the compiler.

For convenience we introduce a type synonym for the type specified in the
generic definition of mapping:

:: Map a1 a2 :== a1 → a2

The type of the generic mapping for a type of any kind can be computed using
the following algorithm [2]:



:: Map? t1 t2 :== Map t1 t2
:: Mapk→l t1 t2 :== ∀a1 a2. (Mapk a1 a2) → Mapl (t1 a1) (t2 a1)

The mapping function for a type t of a kind k has type:

class mapk t :: Mapk t t

The type specified in a generic declaration, like Map, is called the polykinded
type [2] of the generic function. We have to note that, though the type of map
has two type arguments, the generated classes have only one class argument. It
holds for all generic functions: the corresponding classes always have one class
argument. It remains to be researched how to extend the approach for classes
with more than one argument. In this example, we use type Mapk t t with
both arguments filled with the same variable t. It means that the consumed
argument has the same top level structure as the produced result. We need two
type variables to indicate that the structure does not have to be the same at the
lower level. In the example of the reduce function at the end of this section we
will give an idea about how to find the generic type of a function.

The programmer specifies which instances must be generated by the compiler.
For List we write:

instance map List generic

The mapping for types of kind ? → ?, like lists, can be used as usually, but the
user now has to explicitly specify which map of the generated family of maps to
apply. This is done by giving the kind between {| and |} as in

map{|? → ?|} inc (Cons 1 (Cons 2 (Cons 3 Nil)))

Similarly, we can also get the mapping for type Tree, which is of kind ? → ? → ?.

instance map Tree generic

It can be used as in

map{|? → ? → ?|} inc dec (Bin 1 (Tip 2) (Tip 3))

In this example the values in the tips of the tree are incremented, the values in
the branches of the tree are decremented. From now on for readability reasons
we will write kind indexes as subscripts.

Let’s go back to the equality example and see how to define generic equality
in Clean:

generic eq t :: t t → Bool
instance eq Int where

eq x y = eqInt x y
instance eq UNIT where

eq x y = True
instance eq PAIR where

eq eqx eqy (PAIR x1 y1) (PAIR x2 y2) = eqx x1 x2 && eqy y1 y2



instance eq EITHER where
eq eql eqr (LEFT x) (LEFT y) = eql x y
eq eql eqr (RIGHT x) (RIGHT y) = eqr x y
eq eql eqr x y = False

In this definition, like in the definition of map, the instances have additional
arguments depending on the kind of the instance type. Again, the programmer
specifies the instances to be generated, say:

instance eq List generic
instance eq Tree generic

This will result in two instances: eq?→? List and eq?→?→? Tree. The equality can
be used as in

eq?→? eq? [1,2,3] [1,2,3] ⇒ True
eq?→?→? eq? eq? (Bin 1 (Tip 2) (Tip 3)) (Bin 1 (Tip 2) (Tip 3)) ⇒ True
eq?→? (λx y→eq? (length x) (length y)) [[1,2],[3,4]] [[1,1], [2,2]] ⇒ True

In the last line the two lists are equal if they are of the same length and the
lengths of the element lists are equal.

One can see that this equality is more general than one defined in Section 2:
the user can specify how to compare the elements of the structure. However, it
is inconvenient to pass the “dictionaries” (such as eq?) manually every time. For
this reason we generate additional instances that turn explicit dictionaries into
implicit ones:

instance eq? (List a) | eq a where
eq? x y = eq?→?→? eq? x y

instance eq? (Tree a b) | eq a & eq b where
eq? x y = eq?→?→? eq? eq? x y

Such instances make it possible to call

eq? [1,2,3] [1,2,3]
eq? (Bin 1 (Tip 2) (Tip 3)) (Bin 1 (Tip 2) (Tip 3))

with the same effect as above.
The equality operator defined as a type class in the standard library of Clean

can now be defined using the generic equality:

(==) infixr 5 :: t t → Bool | eq? t
(==) x y = eq? x y

Consider an application of map

map?→? (λx → 0) [[1,2], [3,4]]

What would it return: [0,0] or [[0,0], [0,0]]? The overloading will always choose
the first. If the second is needed, the user has to write



map?→? (map?→? (λx → 0)) [[1,2], [3,4]]

As one more example we show the right reduce function, which is a general-
ization of foldr on lists. It takes a structure of type a and an “empty” value of
type b and collapses the structure into another value of type b. Thus, the type
is a → b → b, where a is the structure, i.e. a is a generic variable, and b is a
parametrically polymorphic variable.

generic rreduce a :: a b → b
instance rreduce Int where

rreduce x e = e
instance rreduce UNIT where

rreduce x e = e
instance rreduce PAIR where

rreduce redx redy (PAIR x y) e = redx x (redy y e)
instance rreduce EITHER where

rreduce redl redr (LEFT x) e = redl x e
rreduce redl redr (RIGHT x) e = redr x e

Reducing types of kind ? just returns the “empty” value. The instance for pairs
uses the result of reduction for the second element of the pair as the “empty”
argument for reduction of the first element. To reduce the sum we just reduce
the arguments.

The function is an example of a parametrically polymorphic function: here b
is a non-generic type variable. We can define the standard foldr function that is
defined on types of kind ? → ? using rreduce.

foldr :: (a b → b) b (t a) → b | rreduce?→? t
foldr op e x = rreduce?→? op x e

How do we come up with the type for generic reduce knowing the type of
reduce for lists (foldr)? The type of a standard definition for foldr is:

foldr :: (a → b → b) b [a] → b

If it is generalized to any type of kind ? → ?, it becomes

foldr :: (a → b → b) b (t a) → b

The type (t a) is the structure that we are collapsing. The first argument is the
function that we apply to the elements of the structure, i.e. it is folding for type
a of kind ?. So, we can choose the type (a → b → b) as the generic type. With
this generic type we get

class rreduce? a :: a b → b
class rreduce?→? a :: (a1 → b → b) (a a1) b → b
class rreduce?→?→? a :: (a1 → b → b) (a2 → b → b) (a a1 a2) b → b

The type for kind ? → ? is the same as the type of foldr, except that the last
two arguments are flipped. This idea of finding out the generic type can be used
for other functions that normally make sense for types of kind ? → ?.



4 Implementation

In this section we describe how the generic definitions are translated to classes
and instances of non-generic Clean. Suppose we need to specialize a generic
function g to a data type T , i. e. generate an instance of g for T . A generic
definition in general looks like

generic g a1 ... ar :: G a1 ... ar p1 ... ps

Here G is the polykinded type of the generic function g, ai are polykinded type
variables and pi are polymorphic type variables (i.e. the function is parametri-
cally polymorphic with respect to them). We will denote p1 . . . ps as p.

To generate the instance for a data type T the following has to be specified
by the user

instance g T generic

A data type T has the following form

:: T a1 ... an = K1 t11 ... t1l1 | ... |Km tm1 ... tmlm

As an example in this section we will use the generic equality function defined
in the previous section and its specialization to lists

:: Eq a :== a → a → Bool
generic eq :: Eq a
:: List a = Nil | Cons a (List a)
instance eq List generic

Here is a short summary of what is done to specialize a generic function g to a
data type T . The following subsections give more details.

– Create the class gk for the kind k of the data type T , if not already created.
The instance on T becomes an instance of that class (Section 4.1).

– Build the generic representation T ◦ for the type T . Also build the conversion
functions between T and T ◦ (Section 4.2)

– Build the specialization of g to the generic representation T ◦. We have all
the ingredients needed to build the specialization because the type T ◦ is
defined using sums and products. The instances for sums and products are
provided by the user as part of the generic definition. (Section 4.3).

– The generic function is now specialized to the generic representation T ◦, but
we need to specialize it to the type T . We generate an adaptor that converts
the function for T ◦ into the function for T (Section 4.4).

– Build the specialization to the type T . It uses the specialization to T ◦ and
the adaptor. The instance gk on T is the specialization of the generic function
g to the type T . (Section 4.3).

– For convenience we additionally create shorthand instances for kind ? (Sec-
tion 4.5).



4.1 Kind-indexed Classes

The polykinded type of a generic function is used to compute the type of the
function for a kind using the following algorithm [2]:

G? t1 ... tr p :== G t1 ... tr p
Gk1→k2 t1 ... tr p :== ∀a1...ar.(Gk1 a1 ... ar p) → Gk2 (t1 a1) ... (tr ar) p

From now on we will use the following shorthands:

G′ t p :== G t ... t p
G′k t p :== Gk t ... t p

where t in each right hand side occurs r times.
The generic extension translates a generic definition into a family of class

definitions, one class per kind. The class has one class argument of kind k and
one member. The type of the member is the polykinded type of the generic
function specialized to kind k:

class gk t :: G′k t p

Unlike [2], we use the polykinded types to type the class members rather than
functions.

Each instance of a generic function is bound to one of the classes according
to the kind of the instance type. For our example we have so far

class eq?→? t :: (Eq a) → Eq (t a)
instance eq?→? List where eq?→? eqa = ...

where the body of the instance is still to be generated.

4.2 Generic Type Representation

To specialize a generic function to a concrete data type one needs to build the
generic representation of that type. This is rather straightforward. The algo-
rithms of building the generic representation types and the conversion functions
are described by Hinze in [4]. The conversion functions are packed into a record
defined in the generic prelude:

:: Iso a a◦= {iso :: a → a◦, osi :: a◦ → a}
Here we just give an example of the generic type representation and the isomor-
phism for the list type:

List◦a :== EITHER UNIT (PAIR a (List a))
isoList :: Iso (List a) (List◦ a)
isoList = {iso=isoList,osi=osiList}
where isoList Nil = LEFT UNIT

isoList (Cons x xs) = RIGHT (PAIR x xs)
osiList (LEFT UNIT) = Nil
osiList (RIGHT (PAIR x xs)) = Cons x xs



4.3 Specialization

In this subsection we show how to specialize a generic function g to a data type
T . It is done by first specializing it to the generic type representation T ◦. This
specialization gT◦ is then used to build the specialization gT to the data type T .
The specialization to the generic T ◦ is:

gT◦ :: G′k T ◦ p
gT◦ v1 ... vn = S(g, {a1 := v1, . . . , an := vn}, T ◦)
The following algorithm is used to generate the right hand side by induction on
the structure of the generic representation:

S(g, E , a) = E [a] type variables
S(g, E , T ) = gT type constructors
S(g, E , t s) = S(g, E , t) S(g, E , s) type application
S(g, E , t → s) = g→ S(g, E , t) S(g, E , s) arrow type

Type variables are interpreted as value variables bound in the environment E ,
type constructors T as instances gT of the generic function g on the data type
T , type application as value application and arrow type as application of the
instance of g for the arrow type. In [2] Hinze proves that the functions specialized
in this way are well-typed. For the equality on List◦ the specialization is:

eqList◦ :: (Eq a) → Eq (List◦ a)
eqList◦ eqa = eqEITHER eqUNIT (eqPAIR eqa (eqList eqa))

The functions eqEITHER, eqPAIR and eqUNIT are instances of the generic equality
for the corresponding types. The function eqList is the specialization to lists that
we are generating.

The specialization to T is generated using the specialization to T ◦:

gT :: G′k T p
gT v1 ... vn = adaptor (gT◦ v1 ... vn)
where adaptor :: (G′ (T ◦ a1 ... an) p) → G′ (T a1 ... an) p

adaptor = ...

The adaptor converts the function for T ◦ into the function for T . The adaptors
are generated using bidirectional mappings [1], described in the next subsection.
The equality specialized to lists is

eqList :: (Eq a) → Eq (List a)
eqList eqa = adaptor (eqList◦ eqa)
where adaptor :: (Eq (List◦ a)) → Eq (List a)

adaptor = ...

The mutually recursive definitions of eqList and eqList◦ show why we do not need
type recursion in the generic type representation: the function converts lists to
the generic representations as needed.

Now it is easy to fill in the instance for the type T . It is just the specialization
to the type T .



instance gk T where gk = gT

The instance of the equality for lists is:

instance eq?→? List where eq?→? = eqList

4.4 Adaptors

Adaptors are more complicated than one would expect. The reason is that generic
function types and data types may contain arrows. Since the arrow type is con-
travariant in the argument position, we need bidirectional mapping functions
to map it [1]. We define bidirectional mapping by induction on the structure of
types as a special generic function predefined in the compiler:

generic bmap a b :: Iso a b

It is automatically specialized to all data types in the following way

instance bmap T where
bmap v1 ... vn = {iso=isoT, osi=osiT}
where isoT (K1 x11 ... x1m1) = K1 x′11 ... x′1m1

...
isoT (Km xm1 ... xmlm) = Km x′m1 ... x′mlm
osiT (K1 x11 ... x1m1) = K1 x′′11 ... x′′1m1

...
osiT (Km xm1 ... xmlm) = Km x′′m1 ... x′′mlm

Here xij :: tij is the jth argument of the data constructor Ki. New constructor
arguments x′ij and x′′ij are given by

x′ij = (S(bmap, {a1 := v1, . . . , an := vn}, tij)).iso xij

x′′ij = (S(bmap, {a1 := v1, . . . , an := vn}, tij)).osi xij

The environment passed to S binds the type arguments of the data type T to
the corresponding function arguments. For example, the instance for lists is

instance bmap List where
bmap v = {iso=isoList, osi=osiList}
where isoList Nil = Nil

isoList (Cons x xs) = Cons (v.iso x) ((bmapList v).iso xs)
osiList Nil = Nil
osiList (Cons x xs) = Cons (v.osi x) ((bmapList v).osi xs)

The instance for the arrow is predefined as

instance bmap (→) where
bmap bmaparg bmapres = {iso=isoArrow, osi=osiArrow}
where isoArrow f = bmapres.iso · f · bmaparg.osi

osiArrow f = bmapres.osi · f · bmaparg.iso



This instance demonstrates the need for pairing the conversion functions to-
gether.

This generic function is used to build bidirectional mapping for a generic
function type:

bmapg :: Isokind(G) G ... G
bmapg v1 . . . vr u1 . . . us

= S(bmap, {a1 := v1, . . . , ar := vr, p1 := u1, . . . , ps := us}, G a p)

The function lifts the isomorphisms for the arguments to the isomorphism for
the function type. In the function type the data type Iso is used as a polykinded
type. It is instantiated to the type of the generic function G. The right hand
side is defined by induction on the structure of type G. For the generic equality
we have

bmapeq :: (Iso a a◦) → (Iso (Eq a) (Eq a◦))
bmapeq v = bmap→ v (bmap→ v bmapBool)

Bidirectional mapping for the primitive type Bool is the identity mapping, be-
cause it has kind ?.

Now we can generate the body of the adaptor:

adaptor = (bmapg isoT ... isoT isoId ... isoId).osi

The a-arguments are filled in with the isomorphism for the data type T and the
p-arguments with the identity isomorphism. In the current implementation ps
are limited to kind ?, so we use the identity to map them. In our example of the
equality on lists the adaptor is

adaptor = (bmapeq isoList).osi

4.5 Shorthand Instances for Kind ?

For each instance on a type of a kind other than ? a shorthand instance for kind
? is created. Consider the instance of a generic function g for a type T a1 ... an,
n ≥ 1. The kind k of the type T is k = k1 → ... → kn → ?.

instance g? (T a1 ... an) | gk1 a1 & ... & gkn an where
g? = gk gk1 ... gkn

For instance, for the equality on lists and trees we have

instance eq? [a] | eq? a where
eq? x y = eq?→? eq? x y

instance eq? Tree a b | eq? a & eq? b where
eq? x y = eq?→?→? eq? eq? x y

These instances make it is possible to call eq? [1,2,3] [1,2,3] instead of eq?→? eq?

[1,2,3] [1,2,3]: they turn explicit arguments into dictionaries of the overloading
system.



5 Customized Instances

Generic functions can be defined to perform a specific task on objects of a specific
data type contained in any data structure. Such generic functions have the big
advantage that they are invariant with respect to changes in the data structure.

Let’s for example consider terms in a compiler.

:: Expr = ELambda Var Expr
| EVar Var
| EApp Expr Expr

:: Var = Var String

We can define a generic function to collect free variables in any data structure
(e.g. parse tree):

generic fvs t :: t → [Var]
instance fvs UNIT where fvs x = []
instance fvs Int where fvs x = []
instance fvs PAIR where

fvs fvsx fvsy (PAIR x y) = removeDup(fvsx x ++ fvsy y)
instance fvs EITHER where

fvs fvsl fvsr (LEFT l) = fvsl l
fvs fvsl fvsr (RIGHT r) = fvsr r

instance fvs Var where fvs x = [x]
instance fvs Expr where

fvs (ELambda var expr) = removeMember var (fvs? expr)
fvs (EVar var) = fvs? var
fvs (EApp fun arg) = removeDup(fvs? fun ++ fvs? arg)

UNITs and Ints do not contain variables, so the instances return empty lists.
For pairs the variables are collected in both components; the concatenated list
is returned after removing duplicates. For sums the variables are collected in
the arguments. The instance on Var returns the variable as a singleton list. For
lambda expressions we collect variables in the lambda body and filter out the
lambda variable. For variables we call the instance on variables. For applications
we collect the variables in the function and in the argument and return the
concatenated list.

Now, if the structure containing expressions (e.g. a parse tree) changes, the
same generic function can still be used to collect free variables in it. But if
the expression type itself changes we have to modify the last instance of the
function accordingly. Let’s have a closer look at the last instance. Only the
first alternative does something special - it filters out the bound variables. The
other two alternatives just collect free variables in the arguments of the data
constructors. Thus, except for lambda abstractions, the instance behaves as if it
was generated by the generic extension. The generic extension provides a way to
deal with this problem. The user can refer to the generic implementation of an
instance that (s)he provides. In the example the instance on Expr can be written
more compactly:



instance fvs Expr where
fvs (ELambda var expr) = removeMember var (fvs? expr)
fvs x = fvs{|generic|} x

The name fvs{|generic|} is bound to the generic implementation of the instance
in which it occurs. The code generated for the instance on Expr is:

fvsg
Expr x = (bmapfvs isoExpr).osi (fvsExpr◦ x)

fvsExpr (ELambda var expr) = removeMember var (fvsExpr expr)
fvsExpr x = fvsg

Expr x

Here fvsg
Expr denotes the function generated for fvs{|generic|}. The function for

the generic representation fvsExpr◦ is generated as usually.

6 Related Work

Generic Haskell is an extension for Haskell based on the approach of kind-indexed
types, described in [2]. Despite pretty different notation, generic definitions in
Generic Haskell and Clean are similar. The user provides the polykinded type
and cases for sums, products, unit, arrow and primitive types. In Generic Haskell
an overloaded function cannot be defined generically. It means that, for instance,
equality operator (==) has to be defined manually. In Clean overloaded functions
are supported. For instance, the equality operator in Clean can be defined in
terms of the generic function eq:

(==) infixr 5 :: t t → Bool | eq? t
(==) x y = eq? x y

Currently Generic Haskell does not support the module system. Clean supports
the module system for generics in the same way as it does it for overloaded
functions.

Glasgow Haskell supports generic programming as described in [1]. In GHC
generic definitions are used to define default implementation of class members,
giving systematic meaning to the deriving construct. Default methods can be
derived for type classes whose class argument is of kind ?. That means that
functions like mapping cannot be defined generically. In Clean a generic defi-
nition provides default implementation for methods of a kind-indexed family of
classes. For instance, it possible in Clean to customize how elements of lists are
compared:

eq?→? (λx y→eq? (length x) (length y)) [[1,2],[3,4]] [[1,1], [2,2]] ⇒ True

This cannot be done in GHC, since the equality class is defined for types of
kind ?. In Clean one generic definition is enough to generate functions for all
(currently up to second-order) kinds. This is especially important for functions
like mapping.

In [5] Chen and W. Appel describe an approach to implement specialization
of generic functions using dictionary passing. Their work is a the intermediate



language level; our generic extension is a user level facility. Our implementation
is based on type classes that are implemented using dictionaries. In SML/NJ the
kind system of the language is extended, which we do not require.

PolyP [6] is a language extension for Haskell. It is a predecessor of Generic
Haskell. PolyP supports a special polytypic construct, which is similar to our
generic construct. In PolyP, to specify a generic function one needs to provide
two additional cases: for type application and for type recursion. PolyP generic
functions are restricted to work on regular types. A significant advantage of
PolyP is that recursion schemes like catamorphisms (folds) can be defined. It
remains to be seen how to support such recursion schemes in Clean.

In [8] Lämmel, Visser and Kort propose a way to deal with generalized folds
on large systems of mutually recursive data types. The idea is that a fold algebra
is separated in a basic fold algebra and updates to the basic algebra. The basic
algebras model generic behavior, whereas updates to the basic algebras model
specific behavior. Existing generic programming extensions, including ours, allow
for type indexed functions, whereas their approach needs type-indexed algebras.
Our customized instances (see section 5) provide a simple solution for deal-
ing with type-preserving (map-like) algebras (see [8]). To support type-unifying
(fold-like) algebras we need more flexible encoding of the generic type represen-
tation.

7 Conclusions and Future Work

In this paper we have presented a generic extension for Clean that allows to
define overloaded functions with class variables of any kind generically. A generic
definition generates a family of kind-indexed type (constructor) classes, where
the class variable of each class ranges over types of the corresponding kind.
For instance, a generic definition of map defines overloaded mapping functions
for functors, bifunctors etc. Our contribution is in extending the approach of
kind-indexed types [2] with overloading.

Additionally, we have presented an extension that allows for customization
of generated instances. A custom instance on a type may refer to the generated
function for that type. With this feature a combination of generic and specific
behavior can be expressed.

Currently our prototype lacks optimization of the generated code. The over-
head introduced by the generic representation, the conversion functions and the
adaptors is in most cases unacceptable. But we are convinced that a partial
evaluator can optimize out this overhead and yield code comparable with hand-
written one. Our group is working on such an optimizer.

Generic Clean currently cannot generate instances on array types and types
of a kind higher then order 2. Class contexts in polykinded types are not yet sup-
ported. To support pretty printers and parsers the data constructor information
has to be stored in the generic type representation. The current prototype has
a rudimentary support for uniqueness typing. Uniqueness typing in polykinded
types must be formalized and implemented in the compiler. As noted in section



6 our design does not support recursion schemes like catamorphisms. We plan
to add the support in the future.
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