Combining Generics and Dynamics

Peter Achten! and Ralf Hinze?
(peter88@cs.kun.nl, ralf@informatik.uni-bonn.de)

!Nijmegen Institute for Information and Computing, University of Nijmegen,
1 Toernooiveld, 6525 ED, Nijmegen, The Netherlands
Institut fiir Informatik ITI, Universitit Bonn,
Romerstrafle 164, 53117 Bonn, Germany

Abstract. In this paper we discuss the surprisingly elegant interaction
between two lines of rather independent research, namely generic (or
polytypic) programming and dynamic types. We show how the two disci-
plines meet and emphasize their characteristics in the area of interactive
programming as implemented in the functional language Clean. In this
language, an extensive library for creating Graphical User Interfaces is
provided. We demonstrate how dynamic types can be used to store ar-
bitrary GUI objects as resources and how generic functions can be used
to manipulate these values. This results in a flexible system of strongly
typed and higher-order resources.

1 Introduction

In this paper we discuss the interaction between two recent additions to the
pure, lazy, functional programming language Clean [17]: dynamic types [15,16]
and generic functions [8,11,5].

The main purpose of dynamic types is to serialise values, in particular func-
tional values. Serialised values can be freely exchanged between applications,
processes, incarnations of the same application, and between functions inside
the same program. They can be sent over a network and stored to and retrieved
from secondary memory. Reading a dynamic value is as simple as telling its
type: there is no need to write parsers and do error-checking. (This work has,
of course, to be done by the compiler writer and the runtime-system, but it is
done only once.)

Generic programming is all about succinctness. Generic programming allows
us to write one single function for tasks that are similar for different types. This
is accomplished by defining these functions on both the type structure of their
argument and their value. In this way one can write parsers, pretty printers,
equality operations, ordering operations etc in one go.

The Clean language has an elaborate library to allow programmers to create
interactive applications using Graphical User Interfaces, the Object 1/0 library
[3,4]. A key design decision in this library is to let programmers construct com-
positions of algebraic data values that describe individual GUI components. Each
sort of GUI component has a dedicated algebraic type constructor that describes

its look and feel. The functionality of GUI components is defined by means of
higher-order function arguments. In a sense, the Object I/O library provides
an extensible set of types that form a domain specific language for constructing
GUIs. Perhaps surprisingly, the approach taken in the library is an instance of
a more general approach that is typical of generic programming.

One particular advantage of the design is that it provides a language for
GUI resources. Usually, GUI resources in programming environments are defined
by simple special purpose languages that can be parsed by the environment
and compiled into code that creates the intended GUI objects. The connection
with dynamic types should be obvious: they allow us to store and retrieve GUI
definitions, which are (compositions of) algebraic values. The connection with
generic programming is as follows: to retrieve a dynamic value one needs to know
the type of the extracted value. Due to the design of the Object I/O library, the
type of a GUI value closely reflects its structure (see Section 2). A program
that reads a GUI resource must therefore either know the exact type or leave it
almost undetermined. Neither option is satisfactory: the first alternative makes
it impossible to change the resource afterwards (because that almost certainly
changes its type), while the second alternative doesn’t give programmers the
means to control the type of resource they want to use. One goal of this paper
is to see whether generic programming can add the required flexibility.

The contributions of this paper to the domain of dynamics and generics are:

— A general framework for generic programming is presented in [9]. The prin-
ciple idea of this paper is to assign a polytypic value a type that depends
on the kind of its type index. Unfortunately, this technique is not immedi-
ately applicable here since Object I/O types are parameterised by the types
of states (see Section 2). The solution to this problem is to ‘lift’ kinds and
types to a higher realm. Using this lifting we demonstrate that polytypic
functions can be written for Object 1/O values.

— The standard way of overloading in functional languages, such as Haskell
and Clean, fixes a finite set of function instances, thus limiting the applica-
tion domains of these functions. When all types are statically known, this
does not pose any problems because the compiler can detect completeness.
However, when working with dynamic values, the domain of applicable types
is unknown. We argue that generic functions are perfectly suited in this case:
they provide a universal recipe to construct function instances if a type is
known. Because dynamic values carry the type of their value around, it is
possible to generate the proper instance function at run-time.

We have tested simplified versions of the examples presented in this paper
in order to work around limitations of the experimental extensions in the cur-
rent Clean 2.0 compiler. The examples are presented, however, using Haskell 98
syntax, augmented by the features presented in [§], and Clean uniqueness at-
tributes. In addition, we assume that we are allowed to define custom instances
to overrule generic definitions, as in [11].

The rest of the paper is structured as follows. We first give a brief introduc-
tion to the essential features of the Object I/0 library (Section 2), to dynamic

types (Section 3), and generic programming (Section 4). We will not go into
too much detail since these concepts have been discussed elsewhere. In order to
abstract away from the many details of the Object I/O library, we will study
the applicability of dynamics and generics by means of three simplified systems
in Section 5. We review related work in Section 6 and conclude in Section 7.

2 The Object I/0 library

As stated in the introduction, one of the major design decisions of the Object
I/0O library is to model each sort of GUI object by a separate type constructor.
This has the advantage that one can extend the library without recompilation
and recoding. GUIs are specified by means of compositions of primitive type
constructors. For instance, to define windows, button- and textcontrols one uses:

data Window c ls pst = Window String (¢ ls pst)

[WindowAttribute (Is, pst)]
data Button Is pst = Button String [ControlAttribute (Is, pst)]
data Text Is pst = Text String [ControlAttribute (Is, pst)]

In order to glue separate GUI objects, we require suitable combinators. The most
frequently used combinator is pairing (for historic reasons written as ‘:+4:’):

infixr -4 9
data :+: t; & Is pst = (t1 s pst) :+: (&2 Is pst)

This is basically a lifted pair type that is parameterised by the state of its GUI
components (we will say more about state as we go along).

Windows and controls are instances of the Windows and Controls type con-
structor classes. Type constructor classes fix the ‘glue rules’. For instance, the
rule that windows shall only contain controls is expressed as:

class Windows wdef where

openWindow :: s — wdef Is (PSt ps) — PSt ps — PSt ps
class Controls cdef where

openControl :: cdef ls (PSt ps) — PSt ps — PSt ps

instance Controls Button

instance Controls Text

instance (Controls t;, Controls t3) = Controls (-+: t t2)
instance (Controls ¢) = Windows (Window c)

The actions of the GUI elements are higher-order function arguments that typi-
cally appear as an attribute (such as WindowAttribute or ControlAttribute). For
instance, WindowAttribute is defined as:

data WindowAttribute st = - - - | WindowClose (st — st) | ---

The WindowClose f attribute determines the behaviour of the window whenever
the user wants to close the window.

Actions are state transformers. The initial state of any program is the x World.
A GUI program, in general, consists of several interactive processes. Each process
has a public state ps that is shared by all of its GUI components. This state can
be chosen freely by the programmer. The x World is transformed into a special
value called the ‘I/O state’ and has abstract type 10St ps. It contains all the
required information needed for doing GUI I/O. The pair of public state and
I/0 state is collected in a record of type PSt ps (the process state):

data % PSt ps = {ps :: ps,io :: xIOSt ps}

Finally, every GUI component can encapsulate a local state. Local state is shared
amongst its children, unless a GUI component decides to ignore it.

To summarize, Clean Object I/O programs are tagged collections of (local)
state transition functions that are capable of modifying the world. The tags are
type constructors that reflect the sort of GUI elements that have to be created
by the system.

3 Dynamic types

A dynamic type [15, 16] is basically a pair, consisting of the static value and its
type, wrapped into a new value of type Dynamic. Examples include:

dynamic 50 = Int
dynamic reverse i [a] — [a]
dynamic reverse [1..10] :: [Int]
dynamic [dynamic 50 = Int
,dynamic reverse :: [a] — [a]
] ;o [Dynamic]
dynamic Button "Hello" []
+:
Text "World" [] :::+: Button Text ls pst

As an aside, note that in Clean numeric literals have type Int, rather than,
(Num a) = a as in Haskell. Values of type Dynamic can be matched in function
alternatives and case expressions. A ‘dynamic pattern’ matches the value (in the
same way as for statically typed values) and additionally its type. It is important
to note that type variables in a dynamic pattern do not indicate polymorphism.
Rather, they are bound to the offered type. The following may serve as an
example:

f v Dynamic — Int

f (z:: Int) =z

f (g:: Int — Int) =g5

f ((z :: Int, y) :: (Dynamic, Int)) =z +y

apply :: Dynamic — Dynamic — Dynamic
apply (f :a — b) (z:: a) = dynamic f z :: b

apply _ _ = dynamic "Error" :: String

Clean 2.0 offers two library functions to store and retrieve dynamic values, iden-
tified by its file name:

writeDynamic :: (FileSystem env)

= String — Dynamic — xenv — (Bool, xenv)
readDynamic :: (FileSystem env)

= String — xenv — (Bool, Dynamic, xenv)

Dynamic types are at the foundation of creating GUI resources. However, in
contrast to ‘standard’” GUI resources, these resources are strongly typed and
may additionally contain code.

4 Generic programming

This section briefly reviews the concept of polytypic programming. For a more
thorough treatment the interested reader is referred to [8,9].

Consider writing an equality function that checks whether two elements of
some given type are equal. As an example, the equality test for strings of type

data String = Nil | Cons Char String
is given by

equalString :: String — String — Bool
equalString Nil Nil = True
equalString (Cons c1 s1) (Cons 3 s2)

= equalChar c¢1 ca N equalString s so

Abstracting over the list element type, we obtain the ubiquitous, parametric list
type (which enjoys special syntax, but this is not important here).

data List a = Nil | Cons a (List a)

The list type embraces strings as lists of characters: List Char.

How can we define an equality test on a list of something? Or, to put it
differently, how can we suitably generalize the equalString function? Since the
element type is not known in general, we must abstract away from the equalChar
function.

equalList :: Va.(a — a — Bool) — (List a — List a — Bool)

equalList equala Nil Nil = True
equalList equala (Cons a1 x1) (Cons ag 13)
= equala a1 as N equalList equala x1 x5

Thus, equalList takes as an argument an equality function for the element type a
and yields an equality function for List a.!

L Of course, the type signature cannot ensure that the argument is a genuine equality
function.

The types in Clean and in Haskell are assigned so-called kinds, which can
be seen as the ‘type of types’. Manifest types such as Bool or Int have kind ‘x’.
The kind k1 — kg represents type constructors that map type constructors of
kind x7 to those of kind k3. Now, the message of the exercise above is that a
polytypic function such as taking equality has a type that depends on the kind
of the particular instance at hand: for a type T of kind ‘X', equal is assigned
type T — T — Bool; for a type of F' of kind x — *, equality possesses the
type Ya.(a — a — Bool) — (F a — F a — Bool). To coin a catchy phrase: a
polytypic value possesses a polykinded type. In general, we have (kind and type
arguments are written in angle brackets for emphasis):

Equal(x) t =1t — t — Bool
Equal(m — Kg) t =Va.FEqual{k1) a — Equal(ksz) (t a)

equal(t :: K) 2 Equal(k) t

It remains to provide a generic definition of equal. Now, one can show that
a polytypic function is uniquely defined by giving cases for primitive types. Let
us assume that the following type constructors are primitive: the unit type 1::*,
the sum type + :: x — x — %, and the product type X :: * — * — x defined:

data 1 =()
data+ab =Inla|Inrb
data x a b= (a,bd).

Then equal is given by:

equal(1) () () = True

equal(+) equala equalb (Inl ay) (Inl a3) = equala a; ay

equal(+) equala equalb (Inl ay) (Inr by) = False

equal{+) equala equald (Inr by) (Inl ay) = False

equal{+) equala equald (Inr by) (Inr by) = equalb by by

equal{x) equala equalb (a1, b1) (ag, ba) = equala ay ag N equalb by bs.

This definition contains all ingredients needed to specialize equal for arbitrary
types. Types introduced by data declarations are also subsumed since they
introduce ‘sum of products’ types.

Perhaps surprisingly, we can even slightly generalize the type of equal (with-
out affecting the code): the element types need not be identical.

Equal(x) t; t =t — 1ty — Bool
Equal{ky — ko) t1 ta = Va1 ay. Equal(m) ay ag — Equal(ks2) (1 a1) (t2 a2)

equal(t :: K) :: Equal(k) t
As a final remark, note that the second equation has the same structure for all

polytypic values. Thus, a polytypic function is uniquely described by its type on
‘x’ instances and by its action on predefined types.

In Clean, a polytypic function can be captured in a straightforward way using
generic classes [5]. Here is how equal is implemented.

generic equal t; to :: t1 — ta — Bool
instance equal 1 where
equal () () = True
instance equal (+) where
equal equala equalb (Inl a1) (Inl az) = equala a; ap
equal equala equalb (Inl ay) (Inr by) = False
equal equala equalb (Inr by) (Inl ag) = False
equal equala equalb (Inr by) (Inr by) = equalb by bo
instance equal (x) where
equal equala equalb (a1, b1) (az,ba) = equala a1 ag N equalb by by

The correspondence to the above definition of equal should be immediate. Now,
if we define an ‘ordinary’ function that depends on equal such as

member it (equal t) = t — List t — Bool
member a Nil = Fualse
member a (Cons b x) = equal a b V member a z,

then this dependence is recorded in the context of the type signature (like for
overloaded functions).

5 Strongly typed GUI resources

In this paper, a GUI resource is a purely functional value that is an instance of
one of the GUI type constructor classes, which are provided in the API of the
Object I/0O library. In order to keep the following discussion reasonably short,
we will study three simplified versions of the Object I/O library. Each of these
systems identifies a type constructor class whose instances we are interested
in. (We do not care about the actual member functions, though.) The systems
differ in the increasingly fine-grained access to state. The first system only allows
access to global state, the second introduces a state that is shared by all GUI
components within the same process, and the third introduces truly local state
within GUI components.

In each of these systems we develop two representative generic functions:
eval and param. The function eval takes a resource value and tries to find a
function that can be applied to a given state argument. This function models
the Object I/O interpretation function that, given a certain event, needs to
find the corresponding callback function. The function param takes a resource
value and replaces specified callback functions. This function is representative of
applications that use GUI resources: a GUI resource contains the look of a GUI
object, and it is the responsibility of the application to add the feel.

5.1 GUI objects with persistent state

The system Global is equivalent to the Haskell version of the Object I/O li-
brary using mutable variables for (local) state, and monadic actions [1]. We have
Objects that are parameterised by actions and that can contain other Objects.
Objects are identified by an Int value.

data Obj obj = Obj Int (Transf « World) obj
type Transf z =xr—x
instance (Global s) = Global (Obj s)

instance Global ()
instance (Global s, Global s3) = Global (+51 $2)
instance (Global s1, Global s3) = Global (X $1 $2)

Note that, in the spirit of the Object I/O library, Obj is parameterised by a type
constructor variable which has kind %, so Obj has kind x — .

Using a bit of imagination, we can think of Obj values as interactive objects.
We interpret an (Obj nr io children) value as an interactive object that is
identified by nr, which has behaviour io, and perhaps sub-objects children. Of
course, instead of using (Transf * World) for actions, we can also use a monadic
style, with (1O ()) action types, but this is not essential. The unit type comprises
the simplest interactive object possible, one without interaction or sub-objects.
The pair type glues together two objects of different types. Sum types model
choice of objects.

Evaluation of objects Our first example of a generic function is eval, that,
given a value s1, the number nr of an object in s1, and a * World value w, looks
up the object (Obj nr io _) in s1, and applies the action o to w. Its signature
for types t of kind % is t — Int — Transf x World.

FEval(k :: O) HK K

Eval{x) t =t — Int — Transf « World
Eval{ky — K2) ¢ =Vz. Eval{k1) © — Eval{ks) (t x)
eval(t :: k) = Bual(k) t

eval(1) () — =id

eval(x) ea eb (a,b) nr =ebbnr-eaanr

eval{(+) ea eb (Inl a) nr = ea a nr

eval(+) ea eb (Inr b) nr =ebbnr

eval(Obj) ea (Obj nr' io a) nr = if nr’ = nr then io else ea a nr

Here is an example use of eval:

Start :: * World — x World
Start w
= case readDynamic "obj.dyn" w of
(True, expr :: (eval t) = t,w)
— eval, expr 1 w
(L, w)—w

In Clean, the main function is called Start. In order to indicate that it needs ac-
cess to the external world, it requires a * World argument and returns a possibly
modified * World. The type World is an instance of the FileSystem class. If we
assume that the file 0bj.dyn contains the value

dynamic (Obj 0 (print "Hi there.") ()
, Obj 2 (print "Goodbye")
(Obj 1 (print "Hello world") ())
) 2 (0bj (), Obj (0bj ()

then the executable prints “Hello world”, which is the action associated with
the ‘first’ object that is identified by 1 (in depth-first search order). The action
print :: String — Transf « World prints its String argument to the console.

As an aside, note that eval is essentially a reduction or a crush except it
treats one type instance, namely Obj, in a special way.

Generic parameterisation of actions The function param is given a list of
(Int, Transf * World) pairs and an object structure. It looks up all Obj values
and replaces each action by the given action entry in the list. The function lookup
is a variation of the lookup function from the Haskell standard prelude. Instead
of returning a Maybe value, a default result is passed as the second argument,
which is returned if the key element was not found.

Param(k :: O) HK

Param(x) t =t — [(Int, Transf «World)] — t
Param{k1 — ka2) t =Vx . Param(k1) x — Param(kz) (t)
param(t :: K) i Param(k) t

param({1) () _ .y

param(x) pa pb (a,b) fs = (pa a fs,pb b fs)

param(+) pa pb (Inl a) fs = Inl (pa a fs)

param{+) pa pb (Inr b) fs = Inr (pb b fs)

param(0bj) pa (Obj nr io a) fs = Obj nr (lookup nr io fs) (pa a fs)

The following program illustrates the use of param.

Start :: x World — x World
Start w
= case readDynamic "obj.dyn" w of
(True, expr :: (eval t , param t) = t,w)
— eval, (param, expr fs) 1w
(L, w)—w
where
fs =[(2, print "Hi_there.")
, (1, print "Goodbye")
(0, print "Hello world")

)

This time the application nicely prints “Goodbye”.

As an aside, note that param is similar to a mapping function: the lookup
function is mapped across an object structure. In fact, param could be written
as a map, if we made the object types parametric in the Int component (the
integer key). For obvious reasons, however, refactoring the type structure of the
Object 1/O Library is not a viable option.

5.2 GUI objects with public state

Let us now extend the previous system by a public state that is being passed to
all object actions. Instead of having actions of type (Transf = World), all actions
are now of type (Transf (ps,*World)), where ps is the type of the public state.
Because in this and in the next system we ‘enhance’ World by additional state,
we introduce a convenient synonym type W st = (st,* World). Consequently,
actions are of type (Transf (W ps)). The object structures we are interested in
are constructed as follows:

data Obj obj ps Obj Int (Transf (W ps)) (obj ps)

type W st = (st,* World)

type Transf x —r -7

data NilCS ps = NilCS

data SumCS a b ps = InlCS a ps | InrCS b ps
infixr 9 :~:

data :~: a b ps = (a ps) ~: (b ps)
instance (Share s) = Share (Obj s)

instance Share NilCS
instance (Share sy, Share s2) = Share (SumCS s1 $3)
instance (Share s1, Share s3) = Share (:~: s1 $2)

The unit type, the sum and the pair type have been lifted to higher kinds: the
type NilCS has kind x — x and SumCS and :~: have kind (* — %) — (* = %) —
(* — x). Below we will introduce the eval and param functions for this system.

Evaluation of public state objects The purpose of the evaluation func-
tion ewval is to look up a particular object and apply its action to the proper
arguments. In this case, the argument is not only the * World, but also the pub-
lic state. Consequently, for a type t of kind x — x the type of eval must be:
t ps — Int — Transf (W ps). The return value of type ps is the ‘new’ public
state of the system.

Assigning eval a polykinded type is not as straightforward as before: we want
to enforce that the generic argument is a data structure that contains objects
that have actions that work on ps. Hence, the types to generalise from are not
just ¢, but rather t ps.

Consider the desired type of eval for the ‘:~:’ type constructor combinator.
We require that the argument function types are parameterised by ps:

eval (i~ ::(x — %) — (% = %) — (x — *))
= Vps.(Va.a ps — Int — Transf (W ps))
— (Vb.b ps — Int — Transf (W ps))
— i~ a b ps — Int — Transf (W ps)

For comparison, the expanded type of the ‘x’ instance of eval in Global is?:

eval (X i1 x — * — %)
= (Va.a — Int — Transf (W ()))
— (Vb.b — Int — Transf (W ()))
— X a b— Int — Transf (W ())

The point is that the data structures that we are interested in are never basic
types of kind %, but have always at least kind x — x. To accommodate for this
we introduce an operation Tx that does this ‘lifting’ of kinds:

Tx =% — %
T(k1 — k2) = 1(k1) — T(k2)
Using the kind lifter we can specify the polykinded type of eval.

Eval,s(k :: O) Rk

Evalps (T*) t =t ps — Int — Transf (W ps)

Evalps (T(k1 — K2)) t =V . Evalps(1k1) z — Evalps(Tk2) (t)
eval(Tt :: TK) i Vps. Bvalps (Tk) Tt

In the polytypic function body of eval we need to lift the type constructors, as
well (the unit type 1 is lifted to NilCS, ‘+’ to SumCS, and ‘X’ to “:~:7).

eval (Tt :: TK) 2 Vps. Bvalys(Tk) Tt
eval Nle'S) NilCS _ =1id

(1
(
eval(:~:) ea eb (a :~: b) nr ebbnr-eaanr
(
(

eval (SumCS) ea eb (InlCS a) nr = ea a nr
eval(SumCS) ea eb (InrCS b) nr = eb b nr
eval (Obj) ea (Obj nr' io a) nr = if nr’ = nr then io else ea a nr

Observe the similarity of this definition to the one in Section 5.1.
Now, assume that the file 0bj.dyn contains objects that share an integer state
with initial value 1000:

dynamic (1000, Obj 0 (A (c,w)—=(c+1,w)) ()
i~ 0bj 2 (N (c,w) = (e —1,w))
(0bj 1 (M(e,w) — (¢, print (show ¢) w)) ()
) (Int,:~: (Obj () (Obj (Obj ())) Int)

2 We are cheating a little here, as we use the (Transf (W ())) action type, instead of
the (Transf * World) type in order to emphasize the similarity.

The objects with identification value 0 and 2 increment and decrement the public
state, respectively. The object with identification value 1 prints the current value
of the public state without modification. As an example,

Start :: x World — « World
Start w
= case readDynamic "obj.dyn" w of
(True, (state, expr) :: (eval t) = (ps, t ps), w)
— snd ((eval—. expr 1
-eval) expr 0
ceval) expr 1
) (state, w))
(o, w) = w

will print the numbers 1000 and 1001.
Generic parameterisation of public state actions The param function now

replaces actions of objects with a public state. We need to define a generic param
function on (sz ps) values, that receives a list of (Int, Transf (W ps)) pairs.

Paramy,s(k :: O) HR—x

Paramys(1*) t =t ps — [(Int, Transf (W ps))] — t ps
Paramys(1(k1 — Kk2)) t =Vz. Paramps(Tk1) © — Paramps(Tk2) (t)
param (Tt :: 1K) i Vps. Param,s(Tk) Tt

param (NilCS) NilCS _ = NilCS

(
param{:~:) pa pb (a :~: b) fs =paafs i~ pbbfs
param(SumCS) pa pb (InlCS a) fs = InlCS (pa a fs)
param(SumCS) pa pb (InrCS b) fs = InrCS (pb b fs)

(

param(Obj) pa (Obj nrio a) fs = Obj nr (lookup nr io fs) (pa a fs)

If we use the same file content for obj.dyn as above, then the following program
will print the numbers 1000 and 999.

Start :: « World — x World
Start w
= case readDynamic "obj.dyn" w of
(True, (state, expr) :: (eval t, param t) = (ps,t ps), w)
— snd ((eval—. expr 1
-eval) expr 0
-eval () (param,_,y expr fs) 1
) (state, w))
(o w) = w
where

fs =100, A(c,w) — (¢ = 1,w)), (2, A\(¢c,w) — (c+ 1, w))]

5.3 GUI objects with public and local state

In the system Share all objects manipulate the x World and a public state of type
ps. Passing around a single public state has, of course, all the disadvantages and
advantages of global state. To allow for a more modular design of objects, local
state is a prerequisite. To this end the Object I/O library allows objects to
encapsulate their own local state, or share and extend local state among child
objects. As with the public state, the local state in scope is passed along as a
distinct type constructor parameter. Our final system is a pretty good model of
the Object I/O library.

data Obj obj Is ps = Obj Int (Transf (W (ls,ps))) (obj s ps)
type W st = (st,« World)

type Transf z =z—=z

data NiILS Is ps = NilLS

data SumLS a b ls ps = InlLS als ps | InrLS b Is ps

infixr 9 :4:

data :+: a b ls ps = (a ls ps) +: (b ls ps)

instance (Local s) = Local (Obj s)

instance Local NilLS
instance (Local sy, Local s3) = Local (SumLS s1 s3)
instance (Local s1, Local s3) = Local (:+: s1 s2)

Again, the type constructors NilLS, SumLS and ‘:+:" are the lifted versions of
1, ‘47 and ‘x’: NilCS : x — x — % and SumLS,:+: :(x = * = x) = (x = x —
) — (x — * — x). We introduce the kind lifter {x for this purpose:

M =% > *x — %

(k1 — K2) = N(k1) — M(k2)

Passing around the local state type argument allows us to introduce a new local
state or to add a local state. This is accomplished by the following two type
constructor combinators that can be found in the Object I/O library:

data NewLS t Is ps = Inew . NewLS new (t new ps)
data AddLS t ls ps = Jadd . AddLS add (t (add, ls) ps)

instance (Local s) = Local (NewLS s)
instance (Local s) = Local (AddLS s)

Evaluation of stateful objects Naturally, the eval function for Local objects
has a more involved type than the ewval function of Share objects. The reason
is that the local state values are stored in the structure itself, and need to be
restored after evaluation of the action.

eval :: (Local s3) = Int — Transf (W (ps, ss () ps))
eval nr ((ps, s3), w)
= let (s3, (-, ps"), w')) = eval (xmumss) 53 07 (((), ps), w) in ((ps’, 53), w')

The function eval makes use of a generic helper function called eval’. The type
of eval’ is:

Eval 15 ps) () s3 = 83 Is ps — Int — W (s, ps) — (s3 Is ps, W (Is, ps))

The new polykinded type and implementation of eval’ shouldn’t be a surprise
by now. The function definition becomes more complicated because now the
argument structure must be rebuilt as part of the function result.

Eval 15 ps) (k2 O) DR — %

Eval 15,ps) () =tls ps — Int — W (Is, ps) — (t Is ps, W (Is, ps))
Eval(ls,ps) <ﬂ(/{1 - KJ?)) t =Vz. Eval(ls,ps) <ﬁnl> r — Eval(ls,ps) <'ﬂ"{2> (t I)
eval’ (1t :: k) i Vs . Vps . Bval s ps) (M) 1t

eval’ (NGILS) NilLS _ wst = (NilLS, wst)
eval' (:+:) ea eb (a :+: b) nr
= let (a’, wst’) = ea a nr wst
(b, wst") = eb b nr wst'
in (¢’ +: b, wst")
eval’(+) ea eb (InlLS a) nr wst
= let (a’, wst’) = ea a nr wst in (InlLS o', wst’)
eval’(+) ea eb (InrLS b) nr wst
=let (b, wst’) = eb b nr wst in (InrLS b', wst’)
eval’ (Obj) ea (Obj nr' io a) nr ((Is, ps), w)
=if nr' = nr
then let ((Is’, ps’), w’') = io ((Is, ps), w)
in (((Is', ps’), Obj nr' io a), w")
else let (a’, ((Is', ps’), w")) = ea a nr ((Is, ps), w)
in (((Is', ps’), Obj nr' io '), w")
eval' (NewLS) ea (NewLS new a) nr ((Is, ps), w)
=let (d, ((new’, ps’), w")) = ea a nr ((new, ps), w)
in (((Is, ps’), NewLS new’ a'), w’)
eval’ (AddLS) ea (AddLS add a) nr ((Is, ps), w)
=let (a, (((add’,ls"), ps"), w")) = ea a nr (((add, ls), ps), w)
in (((Is’, ps’), AddLS add’ o'),w’)

As an example, we will turn the ‘counting’ object of Section 5.2 into a reusable
object that encapsulates the integer state locally. We now assume that the file
obj.dyn now contains the following object:

dynamic (NewLS 1000
(0bj 0 (A(e,w) = (c+1,w)) ()
A+ 0bj 2 (M(e,w) — (¢ — 1, w))
| (0bj 1 (N (c,w) — (¢, print (show ¢) w)) ())

) NewLS (:++: (0bj () (Obj (0bj ()))) Is ps

The only difference to the example in Section 5.2 is that we have moved the
public integer state inside the object (first argument of NewLS). The type of
this object clearly hides the fact that the object internally operates on integers.
So the following program still produces output 1000 and 1001:

Start :: x World — « World
Start w
= case readDynamic "obj.dyn" w of
(True, expr :: (eval’ t) = t Is ps, w)
— snd ((eval 1- eval 0 - eval 1) (((), expr), w))
(*7 - w) —w

Generic parameterisation of stateful actions Because local states are ex-
istentially quantified, the parameterisation function param can’t be given a list
of actions that work on the intended local state. The only state whose type is
known is the public state and, of course, the x World. There are basically two
ways to pass the action list to param:

— make the list of actions polymorphic in Is (this requires rank-2 polymor-
phism), so the type of param is:

Param{fx) t =t Is ps — [(Int,VIs'. Transf (W (Is’,ps)))] — t Is ps

— Pass [(Int, Transf (W ps))] identification-action pairs and lift the actions
locally to the proper type using the following lifting function:

noLS o Transf (W ps) — Transf (W (Is, ps))
noLS f ((Is, ps), w) = let (ps',w’) = f (ps, w) in ((Is, ps), w’)

Here we adopt the first option. Note that in either case, the new actions
do not obtain access to the local state of the object with which they become
associated, as this is forbidden by the existential quantification.

The definition of param is quite similar to the one in Section 5.2 (the code
is omitted).

Param s ps) (K :: O) 1
Pamm(lg ps) (%) ¢ =t ls ps — [(Int,Vis". Transf (W (Is', ps)))] — t Is ps
Param ps)<ﬂ("€1 — fg)) t = V. Param s pe) (K1) © — Params ps) (k2) (t ©)

param (it :: k) i Vis . ¥ps. Param s ps) (k) 1t

6 Related work

To the best knowledge of the authors, the concepts of generic programming and
dynamic types have not been brought together in other work. The theme of this
collaboration, the creation of strongly typed, higher-order resources (or rather,
arbitrary — functional — values) and their flexible manipulation has, of course,
occurred many times before. In this section we discuss relevant programming
languages and concepts.

Persistent languages: Any persistent programming language has to deal with
the same issues as described in this paper: how to handle (persistent) data.
In Napier88 [13], a similar way of checking persistent data with a static type
is provided as the dynamic type pattern match in Clean. One can also store
and retrieve first-order procedures. Napier88 has a polymorphic type system,
but does not provide overloading or polytypic techniques to manipulate data.

Polytypic languages: The basic research concerns of PolyP [12] and Generic
HVSKELL[6] are polytypic programming. Both languages are ‘front-ends’ to
Haskell [14] and can therefore use the Haskell features to deal with persis-
tent data, such as the Dynamic library of the GHC compiler. This library
essentially uses overloading to wrap and unwrap dynamic values:

toDyn :: Typeable a = a — Dynamic
fromDyn :: Typeable a = Dynamic — a — a

Here overloading is used to check the appropriate types. To resolve potential
overloading ambiguity, Haskell allows expression type-signatures.

The disadvantage of this approach is that the power of the polytypic language
can not be exploited because dynamic values are handled via overloading,
with fixed finite type domains.

Serialisation languages: The object-oriented programming language Java 1.1
[7] supports (de)serialisation via the classes ObjectOutputStream and Object-
InputStream. An object can only be (de)serialised if it implements the re-
quired class. Objects can customise (de)serialisation by defining their own
implementation. Serialised values are opaque. The type of a deserialised value
is determined by the class which readObject method is called, so there is no
generic way of deserialising a value.

Resource languages: Or rather, development environments in which applica-
tion programmers can create (GUI) resources that are used by applications.
In these systems, a resource is defined by a dedicated (simple) language,
that can be parsed by the development environment, and included in the
executable of the application. Reading in a resource usually happens via
statically defined identifiers (such as numbers or file names). On the pro-
gram source level there is no connection between identifier and type. These
programming environments usually come with a visual editing tool, which
takes care that resources are at least internally consistent. Resources typi-
cally do not contain code.

7 Conclusions and future work

Do generics provide the required flexibility to programmers when manipulating
resources? We have seen in Section 5 that we can write generic functions for data
structures that are equivalent to the Object I/O data structures. Because the
open-ended approach of the Object I/O library uses type constructor classes, it
is inevitable that dynamic type patterns are overloaded. We have shown that
generic functions can strengthen dynamics in this respect by being able to create

at run-time an instance of any offered dynamic value. This in contrast to stan-

dard situations in which all instances are required to be created at compile-time.
With respect to the way resources are handled in common programming

development environments, the ‘genamics’ approach offers many advantages:

— Resources are strongly typed, so the application program can be certain of
some of the static properties of the resources that it relies on.

— Resources are higher-order, so we can attach default behaviour:

dynamic (Menultem "Quit" [MenuFunction closeProcess])
it Menultem s (PSt ps)

This example lets the parent process terminate whenever the associated
menu item is selected. We can also parameterise the resource by adding
any behaviour fto the default behaviour:

dynamic (A\f — Menultem "Quit" [MenuFunction (closeProcess - f)])
2 (Transf (Is, PSt ps)) — Menultem Is (PSt ps)

Analogously, one could parameterise a dialog resource with a label-list that
should be turned into a column of label-input field pairs, and a function
associated with a button that gets the current input of these labels and
performs an action.

These advantages shouldn’t be a surprise to anyone using statically typed
languages, because they result from proper modular programming. The point we
would like to make is that this discipline also extends to the realm of resources
(and so for dynamically typed languages) due to the combined power of dynamics
and generics.

The Clean language incorporates both dynamics and generics, but still in an
experimental stage and, most unfortunately, not within a single compiler. The
generics language extension is able to handle the Global objects and functions
in Section 5.1. The dynamics language extension is able to store and retrieve all
objects mentioned in Section 5.

The kind lifting operation has been introduced in a rather ad-hoc fashion.
We expect that it can be rephrased in the recent framework of type-indexed
types [10].

Acknowledgements

Peter Achten would like to thank the department of Software Technology at the
University of Utrecht for their hospitality while visiting Ralf Hinze during his
sabattical.

References

1. Achten, P. and Peyton Jones, S. Porting the Clean Object I/O Library to Haskell. In
Mohnen, M. and Koopman, P. eds., Proceedings of the 20th International Workshop
Implementation of Functional Languages (IFL 2000), Aachen, Germany, September
2000, Selected Papers, Springer, LNCS 2011, pp.194-213.

2. Achten, P. and Plasmeijer, M. The ins and outs of Clean I/O. In Journal of Func-
tional Programming, 5(1), January 1995, Cambridge University Press, pp.81-110.

3. Achten, P. and Plasmeijer, M. Interactive Functional Objects in Clean. In Clack, C.
Davie, T. Proceedings of the 9th International Workshop Implementation of Func-
tional Languages (IFL’97), St. Andrews, Scotland, UK, September 1997, Selected
Papers, Springer, LNCS 1467, pp.304-321.

4. Achten, P. and Wierich, M. A Tutorial to the Clean Object 1/O Library - Version 1.2,
Technical Report CSI-R0003, February 2000, Computing Science Institute, Faculty
of Mathematics and Informatics, University of Nijmegen.

5. Alimarine, A. and Plasmeijer, M. A Generic Extension to Clean. In Proceedings of
21st International Workshop Implementation of Functional Languages (IFL2001),
Stockholm, Sweden, September 2001. To appear.

6. Clarke, D., Hinze, R., Jeuring, J., Loh, A., de Wit, J. Generic HYSKELL, version
0.99 (Amber), November 1 2001, info@generic-haskell.org.

7. Flanagan, D. Java in a nutshell, 2nd edition, O’Reilly & Associates, Inc., 1997.

8. Ralf Hinze. Polytypic values possess polykinded types. In Roland Backhouse and
J.N. Oliveira, editors, Proceedings of the Fifth International Conference on Mathe-
matics of Program Construction (MPC 2000), July 3-5, 2000, volume 1837 of Lec-
ture Notes in Computer Science, pages 2—27. Springer-Verlag, July 2000.

9. Ralf Hinze. Polytypic values possess polykinded types. Science of Computer Pro-
grammming, 2002. To appear.

10. Ralf Hinze, Johan Jeuring, and Andres Loh. Type-indexed data types, 2002. In
submission.

11. Hinze, R. and Peyton Jones, S. Derivable Type Classes. In Graham Hutton, ed.,
Proceedings of the Fourth Haskell Workshop, Montreal, Canada, September 17, 2000.

12. Jansson, P. and Jeuring, J. PolyP — a polytypic programming language extension.
In Conference Record of POPL’97: The 24th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, 1997, ACM Press, pp. 470-482.

13. Morrison, R., Connor, R.C.H., Kirby, G.N.C., Munro, D.S., Atkinson, M.P.,
Cutts, Q.I., Brown, A.L., Dearle, A. The Napier88 Persistent Programming Lan-
guage and Environment. In Atkinson, M.P., Welland, R. eds. Fully Integrated Data
Environments, Esprit Basic Research Series, Springer, 1999, pp. 98-154.

14. Peyton Jones, S. and Hughes, J. eds. Report on the Programming Language Haskell
98 — A Non-strict, Purely Functional Language, 1 February 1999.

15. Pil, M.R.C., Dynamic types and type dependent functions. In Hammond, Davie,
Clack, eds., Proc. of Implementation of Functional Languages (IFL ’98), London,
U.K., Springer-Verlag, Berlin, LNCS 1595, pp.169-185.

16. Pil, M. First Class File I/0, PhD Thesis, in preparation.

17. Plasmeijer, M.J. and van Eekelen, M.C.J.D. Functional Programming and Parallel
Graph Rewriting, Addison-Wesley Publishing Company, 1993.

