
A Generic Programming Extension for Clean

Artem Alimarine and Rinus Plasmeijer

Nijmegen Institute for Information and Computing Sciences,
1 Toernooiveld, 6525ED, Nijmegen, The Netherlands,

{alimarin,rinus}@cs.kun.nl

Abstract. Generic programming enables the programmer to define func-
tions by induction on the structure of types. Defined once, such a generic
function can be used to generate a specialized function for any user de-
fined data type. Several ways to support generic programming in func-
tional languages have been proposed. The approach with kind-indexed
types makes it possible to define generic functions indexed by types of
different kinds. Another approach allows to define default implemen-
tation for instances of type classes in a generic way. In this paper we
describe a combination of these two approaches, which has advantages
of both of them. The key idea of our approach is that a generic function
generates a kind-indexed system of type classes, one class per kind. The
class variable of such a class ranges over types of the corresponding kind.
For instance, an overloaded equality operator can be defined as a specific
case of a generic equality function for kind ?.
Additionally, we propose a separate extension that allows to specify a
customized instance of a generic function for a type in terms of the
generated instance for that type.

1 Introduction

The standard library of a programming language normally defines functions like
equality, pretty printers and parsers for standard data types. For each new user
defined data type the programmer often has to provide similar functions for that
data type. This is a monotone, error-prone and boring work that can take lots
of time. Moreover, when such a data type is changed, the functions for that data
type have to be changed as well. Generic programming enables the user to define
a function once and specialize it to the data types he or she needs. The idea is to
define the functions by induction on the structure of types. This idea is based on
the fact that a data type in many functional programming languages, including
Clean, can be represented as a sum of products of types.

In this paper we present a design and implementation of a generic extension
for Clean. Our work is mainly based on two other designs. The first is the generic
extension for Glasgow Haskell, described by Hinze and Peyton Jones in [3]. The
main idea is to automatically generate methods of a type class, e.g. equality.
Thus, the user can define overloaded functions generically. The main limitation
of this design is that it does not support type classes, whose class variables range
over a type of a kind higher than ?.

The second design is the one used by Generic Haskell Prototype. In this
approach generic functions have so-called kind-indexed types. Hinze describes
it in [4]. The approach works for any kind, one generic definition is enough to
generate functions for types of all kinds. The design does not provide a way to
define overloaded functions generically.

The design presented here combines the benefits of the kind-indexed approach
with those of overloading. Our contributions are:

– We propose a generic programming extension for Clean that allows for kind-
indexed families of overloaded functions defined generically. A generic defini-
tion produces overloaded functions with class variables of any kind (though
current implementation is limited to the first-order kind).

– We propose an additional extension, customized instances, that allows to
specify a customized instance of a generic function for a type in terms of the
generated instance for that type.

See sections 7 and 8 for more detailed discussion of related work and contribu-
tions.

The rest of the paper is organized as follows. Section 2 gives an introduction
to generic programming by means of examples. In Section 3 our approach is
described. We show examples in Generic Clean and their translation to non-
generic Clean. In section 4 we discuss the implementation in more detail. In
section 5 we describe customized instances. Integration with the module system
is discussed in section 6. Finally, we discuss related work and conclude.

2 Generic programming

In this section we give a short and informal introduction to generic programming
by example. First we define a couple of functions using type constructor classes.
Then we discuss how these examples can be defined generically.

2.1 Type constructor classes

This subsection demonstrates how the equality function and the mapping func-
tion can be defined using overloading. These examples are the base for the rest
of the paper. We will define the functions for the following data types:

:: List a = Nil | Cons a (List a)
:: Tree a b = Tip a | Bin b (Tree a b) (Tree a b)
:: Rose a = Rose a (List (Rose a))

The overloaded equality function for these data types can be defined in Clean
as follows:

class eq t :: t t → Bool
instance eq (List a) | eq a where

eq Nil Nil = True

eq (Cons x xs) (Cons y ys) = eq x y && eq xs ys
eq x y = False

instance eq (Tree a b) | eq a & eq b where
eq (Tip x) (Tip y) = eq x y
eq (Bin x lxs rxs) (Bin y lys rys) = eq x y && eq lxs lys && eq rxs rys
eq x y = False

instance eq (Rose a) | eq a where
eq (Rose x xs) (Rose y ys) = eq x y && eq xs ys

All these instances have one thing in common: they check that the data con-
structors of both compared objects are the same and that all the arguments of
these constructors are equal. Note also that the context restrictions are needed
for all the type arguments, because we call the equality functions for these types.

Another example of a type constructor class is the mapping function:

class fmap t :: (a → b) (t a) → (t b)
instance fmap List where

fmap f Nil = Nil
fmap f (Cons x xs) = Cons (f x) (fmap f xs)

instance fmap Rose where
fmap f (Rose x xs) = Rose (f xs) (fmap f xs)

The class variable of this class ranges over types of kind ? → ?. In contrast, the
class variable of equality ranges over types of kind ?. The tree type has kind
? → ? → ?. The mapping for a type of this kind takes two functions: one for
each type argument.

class bimap t :: (a → b) (c → d) (t a c) → (t b d)
instance fmap Tree where

bimap fx fy (Tip x) = Tip (fx x)
bimap fx fy (Bin y ls rs) = Bin (fy y) (bimap fx fy ls) (bimap fx fy rs)

In general the mapping function for a type of arity n, takes n functions: one
for each type argument. In particular, the mapping function for types of kind ?
is the identity function. This remark is important for section 3 where we define
a mapping function for types of all kinds.

2.2 Generic classes

In this subsection we show how to define the equality function generically, i.e.
by induction on the structure of types. The user provides the generic definition
of equality once. This definition can be used to produce the equality function for
any specific data type. The approach described in this subsection assumes only
generic definitions for classes, whose class variables range over types of kind ?.
This is the approach described by Peyton Jones and Hinze in [3]. We present it
here for didactic reasons. In the next section we will present our approach, based
on Hinze’s kind-indexed types [4], which does not have the limitation of kind ?.

The structure of a data type can be represented as a sum of products of
types. For instance, a Clean data type

:: T a1 ... an = K1 t11 ... t1l1 | ... |Km tm1 ... tmlm

can be regarded as

T◦ a1 ... an = (t11 × . . .× t1l1) + . . . + (tm1 × . . .× tmlm)

For instance, List, Tree and Rose from the previous section can be represented
as

List◦ a = 1 + a × (List a)
Tree◦ a b = a + b × (Tree a b) × (Tree a b)
Rose◦ a = a × List (Rose a)

To encode such a representation in Clean we use the following types for binary
sums and products.

:: UNIT = UNIT
:: PAIR a b = PAIR a b
:: EITHER l r = LEFT l | RIGHT r

N-ary sums and products can be represented as nested binary sums and prod-
ucts. The UNIT type is used to represent the product of zero elements, the
EITHER type is a binary sum and the PAIR type is a binary product. With
these types List◦, Tree◦ and Rose◦ can be represented as (in Clean a synonym
type is introduced with :==)

:: List◦ a :== EITHER UNIT (PAIR a (List a))
:: Tree◦ a b :== EITHER a (PAIR b (PAIR (Tree a b) (Tree a b)))
:: Rose◦ a :== PAIR a (List (Rose a))

Note that these types are not recursive. For instance, the right hand side of List◦

refers to List rather than to List◦. So, the encoding affects only the “top-level”
of a type definition. The recursive occurrences of List type are converted to List◦

“lazily”. This way it is easy to handle mutually recursive types (see [3]).
We need conversion functions to convert between a data type T and its

generic representation T ◦. For example, the conversion functions for lists are

fromList :: (List a) → List◦ a
fromList Nil = LEFT UNIT
fromList (Cons x xs) = RIGHT (PAIR x xs)
toList :: (List◦ a) → List a
toList (LEFT UNIT) = Nil
toList (RIGHT (PAIR x xs)) = Cons x xs

Now we are ready to define the equality generically. All the programmer has
to do is to specify the instances for unit, sum, product and primitive types.

class eq t :: t t → Bool
instance eq Int where

eq x y = eqInt x y

instance eq UNIT where
eq x y = True

instance eq (PAIR a b) | eq a & eq b where
eq (PAIR x1 x2) (PAIR y1 y2) = eq x1 y1 && eq x2 y2

instance eq (EITHER a b) | eq a & eq b where
eq (LEFT x) (LEFT y) = eq x y
eq (RIGHT x) (RIGHT y) = eq x y
eq x y = False

This definition is enough to produce the equality functions for almost all data
types: an object of a data type can be converted to the generic representation
using the conversion functions and the generic representations can be compared
using the instances above. The integers are compared with the predefined func-
tion eqInt. We use integers as the only representative of primitive types. Other
primitive types can be handled analogously. The UNIT type has only one in-
habitant; the equality always return True. Pairs are compared component-wise.
Binary sums are equal only when the constructors are equal and their arguments
are equal. In general a data types may involve arrows. To handle such data types
the user has to provide an instance on the arrow type (→). Since equality cannot
be sensibly defined for arrows, we have omitted the instance: comparing types
containing arrows will result in a compile time overloading error.

These definitions can be used to produce instances for almost all data types.
For instance, when the programmer wants equality functions to be generated for
lists, trees and rose trees, (s)he specifies the following

instance eq (List a) generic
instance eq (Tree a b) generic
instance eq (Rose a) generic

These definitions can be used to generate the following instances:

instance eq (List a) | eq a where
eq x y = eq (fromList x) (fromList y)

instance eq (Tree a b) | eq a & eq b where
eq x y = eq (fromTree x) (fromTree y)

instance eq (Rose a) | eq a where
eq x y = eq (fromRose x) (fromRose y)

We have implemented the equality on types using the equality on their generic
representations. It is important to note that the way we convert the arguments
and the results to and from the generic representation depends on the type of
the generic function. To illustrate it, we define a pair of functions: encode and
decode. The first encodes a value as a list of bits and the second decodes a value
from a list of bits. The functions can be regarded as a very simple “pretty”
printer and parser.

class encode t :: t → [Bit]
instance encode Int where

encode x = encodeInt x
instance encode UNIT where

encode x = []
instance encode (PAIR a b) | encode a & encode b where

encode (PAIR x y) = encode x ++ encode y
instance encode (EITHER a b) | encode a & encode b where

encode (LEFT x) = [0: encode x]
encode (RIGHT x) = [1: encode x]

To encode Int we use a function defined elsewhere. The UNIT type has one
constructor and, thus, can be encoded with no bits. PAIR has one constructor:
no bits are needed to encode it. The encodings for the arguments of pairs are
concatenated. EITHER has two constructors, one bit is enough to encode them.
The decode function decodes an object encoded by the encode function:

class decode t :: [Bit] → (t, [Bit])
instance decode Int where

decode x = decodeInt x
instance encode UNIT where

decode x = (UNIT, x)
instance decode (PAIR a b) | decode a & decode b where

decode x = let (l, x1) = decode x
(r, x2) = decode x1

in (PAIR l r, x2)
instance encode (EITHER a b) | decode a & decode b where

decode [0:x] = let(l, x) = decode x in(LEFT l, x)
decode [1:x] = let(r, x) = decode x in(RIGHT r, x)
decode [] = abort “cannot decode”

The would-be-generated instances of encode and decode for lists are

instance encode (List a) | encode a where
encode x = encode (fromList x)

instance decode (List a) | decode a where
decode x = let(l, x) = decode x in(toList l, x)

We can see that arguments are converted with fromList and the return values
with toList. Since decode returns a tuple, we need an additional let construct.
This shows that the conversion not only depends on whether the argument or
the result is converted, but on the structure of the overloaded function type. We
need to generate such conversions automatically; a solution will be presented in
4.3.

When we try to use the same approach to define fmap generically, we have
a problem. The type language has to be extended for lambda abstractions on
the type level. See [2] for details. Another problem is that we need to provide
different mapping functions for different kinds: like fmap for kind ? → ?, bimap
for kind ? → ? → ? and so on. Both of these problems are solved by the approach
with kind-indexed types [4]. In our design, descrined in the following section, we
use this approach in combination with the type constructor classes.

3 Generics in Clean

In this section we show how generic functions can be defined and used in Clean.
We use the mapping function as an example. To define the generic mapping
function we write

generic map a1 a2 :: a1 → a2

instance map Int where
map x = x

instance map UNIT where
map x = x

instance map PAIR where
map mapx mapy (PAIR x y) = PAIR (mapx x) (mapy y)

instance map EITHER where
map mapl mapr (LEFT x) = LEFT (mapl x)
map mapl mapr (RIGHT x) = RIGHT (mapr x)

The generic definition introduces the type of the generic function. The in-
stance definitions provide the mapping for the primitive types, UNIT, PAIR
and EITHER.

The reader has probably noticed that the instances do not seem to “fit”
together: they take a different number arguments. The function for integers
takes no additional arguments, only the integer itself. Similarly, the function for
UNIT takes only the UNIT argument; mapping for types of kind ? is the identity
function. The functions for EITHER and PAIR take two additional arguments;
mapping for types of kind ? → ? → ? needs two additional arguments: one for
each type argument. The generic definition can be viewed as a set of classes, one
class per kind.

class map? t :: t → t
class map?→? t :: (a1 → a2) (t a1) → (t a2)
class map?→?→? t :: (a1 → a2) (b1 → b2) (t a1 b1) → (t a2 b2)
...

The class for kind ? has the type of the identity function. The other two classes
are renamings of fmap and bimap from the previous section. The instances are
bound to the classes according to the kind of the instance type.

instance map? Int where
map? x = x

instance map? UNIT where
map? x = x

instance map?→?→? PAIR where
map?→?→? mapx mapy (PAIR x y) = PAIR (mapx x) (mapy y)

instance map?→?→? EITHER where
map?→?→? mapl mapr (LEFT x) = LEFT (mapl x)
map?→?→? mapl mapr (RIGHT x) = RIGHT (mapr x)

The programmer does not have to write the kind indexes, they are assigned
automatically by the compiler.

The type specified in the generic declaration is used to compute the type of
mapping for a data type. The type of the generic mapping function is

:: Map a1 a2 :== a1 → a2

The types of the mapping function for a type of any kind is computed by

:: Map? t1 t2 :== Map t1 t2
:: Mapk→l t1 t2 :== ∀a1 a2. (Mapk a1 a2) → Mapl (t1 a1) (t2 a1)

The mapping function for a type t of a kind k has type:

class mapk t :: Mapk t t

The type specified in a generic declaration, like Map, is called the poly-kinded
type of the generic function. For more details see [4]. We have to note that,
though the type of map has two type arguments, the generated classes have only
one class argument. It holds for all generic functions: the corresponding classes
always have one class argument. It remains to be researched how to extend the
approach for classes with more than one argument. In this example, we use type
Mapk t t with both arguments filled with the same variable t. It means that the
consumed argument has the same top level structure as the produced result. We
need two type variables to indicate that the structure does not have to be the
same at the lower level. In the example of the reduce function at the end of this
section we will give an idea about how to find the generic type of a function.

The programmer specifies which instances must be generated by the compiler.
For List and Rose we write:

instance map List generic
instance map Rose generic

The mapping for types of kind ? → ?, like lists and rose trees, can be used as
usually, except for kind indexes:

map{|? → ?|} inc (Cons 1 (Cons 2 (Cons 3 Nil)))
map{|? → ?|} toString (Rose 1 (Cons (Rose 2 Nil) Nil)

From now on for readability reasons we will write kind indexes as subscripts.
The main idea is that from the generic definition of map we get more than just
mapping function for types of kind ? → ?. We get mapping function for types
of all (currently first-order) kinds. For example, we can also get the mapping for
type Tree, which is of kind ? → ? → ?.

instance map Tree generic

It can be used as in

map?→?→? inc dec (Bin 1 (Tip 2) (Tip 3))

In this example the values in the tips of the tree are incremented, the values in
the branches of the tree are decremented.

Let’s go back to the equality example and see how to define generic equality
in Clean:

generic eq t :: t t → Bool
instance eq Int where

eq x y = eqInt x y
instance eq UNIT where

eq x y = True
instance eq PAIR where

eq eqx eqy (PAIR x1 y1) (PAIR x2 y2)
= eqx x1 x2 && eqy y1 y2

instance eq EITHER where
eq eql eqr (LEFT x) (LEFT y) = eql x y
eq eql eqr (RIGHT x) (RIGHT y) = eqr x y
eq eql eqr x y = False

In this definition, like in the definition of map, the instances have additional
arguments depending on the kind of the instance type. Again, the programmer
specifies the instances to be generated, say:

instance eq List generic
instance eq Tree generic
instance eq Rose generic

The equality can be used as in:

eq? (Cons 1 (Cons 2 Nil)) (Cons 1 (Cons 2 Nil))
eq? (Rose 1 [Rose 2 []]) (Rose 1 [Rose 2 []])
eq? (Bin 1 (Tip 2) (Tip 3)) (Bin 1 (Tip 2) (Tip 3))

But the equality defined here is more general then the one defined in Section 2.
For instance, when comparing lists one can specify how to compare the elements
of the lists.

eq?→? (λx y→eq? (length x) (length y)) [[1,2],[3,4]] [[1,1], [2,2]] ⇒ True

In the example the two lists are equal if they are of the same length and the
lengths of the element lists are equal.

Now the question is, which kind indexes are applicable? For a type T a1 . . . an

of kind k the only applicable kind indexes are k and ?. For example, type Tree
has kind ? → ? → ?. The kind ? → ? → ? is applicable because we have the
instance

instance eq?→?→? Tree generic

The instance for kind ? is additionally generated to make simple comparison of
trees possible:

instance eq? (Tree a b) | eq a & eq b where
eq? x y = eq ?→?→? eq? eq? x y

One can define the standard equality operator using the generic equality.

(==) infixr 5 :: t t → Bool | eq? t
(==) x y = eq? x y

The user can provide his own instances of a generic function instead of making
the compiler to generate them.

Consider an application of map

map?→? (λx → 0) [[1,2], [3,4]]

What would it return: [0,0] or [[0,0], [0,0]]? The overloading will always choose
the first. If the second is needed, the user has to write

map?→? (map?→? (λx → 0)) [[1,2], [3,4]]

To make such applications simpler in the future we may allow type indexes, as
in Generic Haskell:

map[[a]] (λx → 0) [[1,2], [3,4]] ⇒ [[0,0],[0,0]]

Note that map[[a]] is not overloaded, whereas map?→? is.
As one more example we show the right reduce function, which is a gen-

eralization of foldr on lists. It takes a structure a and a value of type b and
collapses it into another value of type b. Thus, the type is a → b → b, where a is
the structure, i.e. a is a generic variable, and b is a parametrically polymorphic
variable.

generic rreduce a :: a b → b
instance rreduce Int where

rreduce x e = e
instance rreduce UNIT where

rreduce x e = e
instance rreduce PAIR where

rreduce redx redy (PAIR x y) e = redx x (redy y e)
instance rreduce EITHER where

rreduce redl redr (LEFT x) e = redl x e
rreduce redl redr (RIGHT x) e = redr x e

Reducing types of kind ? just returns the “zero”. The instance for pairs uses the
result of reduction for the second element of the pair as the “zero” for reduction
of the first element. To reduce the sum we just reduce the arguments.

The function is an example of a parametrically polymorphic function: here b
is a non-generic type variable. We can define the standard foldr on types of kind
? → ? using rreduce.

foldr :: (a b → b) b (t a) → b | rreduce?→? t
foldr op e x = rreduce?→? op x e

How do we come up with the type for generic reduce knowing the type of
reduce for lists (foldr)? The type of a standard definition for foldr is:

foldr :: (a → b → b) b [a] → b

If it is generalized to any type of kind ? → ?, it becomes

foldr :: (a → b → b) b (t a) → b

The type (t a) is the structure that we are collapsing. The first argument is the
function that we apply to the elements of the structure, i.e. it is folding for type
a of kind ?. So, we can choose the type (a → b → b) as the generic type. With
this generic type we get

class rreduce? a :: a b → b
class rreduce?→? a :: (a1 → b → b) (a a1) b → b
class rreduce?→?→? a:: (a1 → b → b) (a2 → b → b) (a a1 a2) b → b

The type for kind ? → ? is the same as the type of foldr, except that the last
two arguments are flipped. This idea of finding out the generic type can be used
for other functions that normally make sense for types of kind ? → ?.

4 Implementation

In this section we describe how the generic definitions are translated to non-
generic Clean.

4.1 Classes and instances

In general, a generic definition looks like

generic g a1 ... an :: G a1 ... an p1 ... pm

Here G is the polykinded type of the generic function g, ai are polykinded type
variables and pi are polymorphic type variables (i.e. the function is parametri-
cally polymorphic with respect to them). The polykinded type is used to compute
the type of the function for a kind:

G? t1 ... tn p1 ... pm = G t1 ... tn p1 ... pm

Gk→l t1 ... tn p1 ... pm = ∀a1...an.(Gk a1 ... an p1 ... pm)
→ Gl (t1 a1) ... (tn an) p1 ... pm

The generic extension translates such a generic definition into a family of
class definitions, one class per kind. The class has one class argument of kind k
and one member. The type of the member is the polykinded type of the generic
function, specialized to kind k:

class gk t :: Gk t ... t p1 ... pm

Each instance of a generic function is bound to one of the classes according to
the kind of the instance type.

4.2 Generic type representation

To specialize a generic function to a data type one needs the generic represen-
tation of that type. The need for generic type representation has the following
aspects:

– The generic representation type itself. We denote the generic representation
of type T with T ◦. As already mentioned, we use a binary representation of
sums and products.

– The conversion functions from T to T ◦ and back.
– A generic function g of type G a1 . . . an can be specialized to the generic

representation T ◦ as shown in section 2. But we need it to be specialized to
type T . Thus, we need a conversion function from G T ◦ . . . T ◦ to G T . . . T .

The algorithms of building the generic representation types and the conver-
sion functions are described by Hinze in [5]. The conversion functions are packed
into a structure defined in the generic prelude:

:: Iso a a◦= {iso :: a → a◦, osi :: a◦ → a}
Here we just give an example of the isomorphism for the list type:

isoList :: Iso (List a) (List◦ a)
isoList = {iso=iso,osi=osi}
where iso Nil = LEFT UNIT

iso (Cons x xs) = RIGHT (PAIR x xs)
osi (LEFT UNIT) = Nil
osi (RIGHT (PAIR x xs)) = Cons x xs

4.3 Bidirectional mapping

In section 2 we showed how to define a generic function for a data type in
terms of the generic representation of that type. We use the instance for the
generic representation of a type to define the instance for the type itself. To do
that we need to convert the arguments and the results to and from the generic
representation. We noted that this conversion depends on the type of the generic
function. In this subsection we show how to cope with this issue.

To deal with the conversion we use bidirectional mapping functions, as in
[3]. The need to have conversion in both directions comes from the fact that the
arrow type is contravariant in the argument position. The generic function types
and the data types in general may involve arrows. We define the bidirectional
mapping for a generic function type by induction on the structure of types. Type
terms are formed according to

t = T type constructor
| ai polykinded type variable
| pi polymorphic type variable
| t s type application
| t → s arrow type

The bidirectional mapping for a generic function g of type G a1 . . . an p1 . . . pm

is a function

bmapg :: (Iso a1 a◦1) ... (Iso an a◦n) →
(Iso (G a1 . . . an p1 . . . pm) ... (G a◦1 . . . a◦n p1 . . . pm))

bmapg v1 . . . vn = bmap(G a1 . . . an p1 . . . pm)

The function lifts the isomorphisms for the arguments to the isomorphism for
the function type. The right hand side is defined by induction on the structure
of type G a1 . . . an p1 . . . pm:

bmap(T) = bmapT

bmap(ai) = vi

bmap(pi) = bmapId
bmap(t s) = bmap(t) bmap(s)
bmap(t → s) = bmap→ bmap(t) bmap(s)

Here vi is a term variable corresponding to the type variable ai. Currently poly-
morphic type variables pi in polykinded types are limited to be of kind ?; their
mapping is the identity mapping bmapId = {iso=id, osi=id}.

For a data type

:: T a1 ... an = K1 t11 ... t1l1 | ... |Km tm1 ... tmlm

the bidirectional mapping is

bmapT v1 ... vn = {iso=iso,osi=osi}
where

iso (K1 x11 ... x1m1) = K1 (bmap(t11).iso x11) ... (bmap(t1l1).iso x1l1)
...
iso (Km xm1 ... xmlm)= Km (bmap(tm1).iso xm1)...(bmap(tmlm).iso xmlm)
osi (K1 x11 ... x1m1) = K1 (bmap(t11).osi x11) ... (bmap(t1l1).osi x1l1)
...
osi (Km xn1 ... xnmn) = Km (bmap(tm1).osi xm1)...(bmap(tmlm).osi xmlm)

where xij :: tij is the jth argument of the data constructor Ki. For instance,
bidirectional mapping for the list type is

bmapList v = {iso=iso,osi=osi}
where

iso Nil = Nil
iso (Cons x xs) = Cons (v.iso x) ((bmapList v).iso xs)
osi Nil = Nil
osi (Cons x xs) = Cons (v.osi x) ((bmapList v).osi xs)

The bidirectional mapping for the arrow type is

bmap→ bmaparg bmapres = {iso=iso, osi=osi}
where

iso f = bmapres.iso · f · bmaparg.osi
osi f = bmapres.osi · f · bmaparg.iso

This function demonstrates the need for pairing the conversion functions to-
gether.

The examples of the functions generated for the equality and the mapping
are

bmapeq :: (Iso a a◦) → (Iso (Eq a) (Eq a◦))
bmapeq v = bmap→ v (bmap→ v bmapBool)
bmapmap :: (Iso a1 a◦1) (Iso a2 a◦2) → (Iso (Map a1 a2) (Map a◦1 a◦2))
bmapmap v1 v2 = bmap→ v1 v2

Bidirectional mapping for the primitive type Bool is the identity mapping, be-
cause it has kind ?.

4.4 Generated instances

To specialize a generic function g with a polykinded type G a1 . . . an p1 . . . pm

to a type T of kind k the compiler generates the following:

gT :: Gk T . . . T p1 . . . pm

gT = (bmapg isoT ... isoT).osi gT◦

instance gk T where gk = gT

The function gT◦ is generated by interpreting the type T ◦: type application is
replaced by value application, type abstraction by value abstraction and so on.
For example, consider the generic equality

:: Eq a :== a → a → Bool
generic eq :: Eq a

For lists we have

eqList◦ :: (Eq a) → Eq (List◦ a)
eqList◦ eqa = eqEITHER eqUNIT (eqPAIR eqa (eqList eqa))
eqList :: ((Eq a) → Eq (List a))
eqList = (bmapeq isoList).osi eqList◦

instance eq?→? List where eq?→? = eqList

In [4] Hinze proves that the functions specialized in this way are well-typed.
Additionally we create instances for kind ?. For each instance on a type of a

kind other then ? a shortcut instance for kind ? is created. Consider the instance
of a generic function g for a type T a1 ... an, n ≥ 1. The kind k of the type T is
k = k1 → ... → kn → ?.

instance g? (T a1 ... an) | gk1 a1 & ... & gkn an where
g? = gk gk1 ... gkn

For instance, for the equality on lists and trees we have

instance eq? [a] | eq? a where
eq? x y = eq?→? eq? x y

instance eq? Tree a b | eq? a & eq? b where
eq? x y = eq?→?→? eq? eq? x y

These instances make it possible to call

eq? [1,2,3] [1,2,3]

instead of

eq?→? eq? [1,2,3] [1,2,3]

Note that kind ? instances turn explicit arguments into dictionaries of the over-
loading system.

5 Customized instances

In this section we present an extension that allows for customization of generated
instances. Let’s consider a data type for terms in a compiler as an example.

:: Expr = ELambda Var Expr
| EVar Var
| EApp Expr Expr

:: Var = Var String

We can define a generic function to collect free variables in any data structure
containing expressions:

generic fvs t :: t → [Var]
instance fvs UNIT where fvs x = []
instance fvs Int where fvs x = []
instance fvs Var where fvs x = [x]
instance fvs PAIR where

fvs fvsx fvsy (PAIR x y) = fvsx x ++ fvsy y
instance fvs EITHER where

fvs fvsl fvsr (LEFT l) = fvsl l
fvs fvsl fvsr (RIGHT r) = fvsr r

instance fvs Expr where
fvs (ELambda var expr) = filter ((<>) var) (fvs? expr)
fvs (EVar var) = fvs? var
fvs (EApp fun arg) = fvs? fun ++ fvs? arg

UNITs and Ints do not contain variables, so the instances return empty lists. The
instance on Var returns the variable as a singleton list. For pairs the variables
are collected in both components; the concatenated list is returned. For sums
the variables are collected in the arguments. For lambda expressions we collect
variables in the lambda body and filter out the lambda variable. For variables

we call the instance on variables. For applications we collect the variables in the
function and in the argument and return the concatenated list.

Let’s have a closer look at the last instance. Only the first alternative does
something special - it filters out the bound variables. The other two alternatives
just collect free variables in the arguments of the data constructors. Thus, except
for lambda abstractions, the instance behaves as if it was generated by the generic
extension. In a real-world compiler the type Expr may contain many alternatives.
It is tedious to provide all the alternatives in each generic function, even if only
a couple of them are essential. If the type is modified all such places have to be
modified as well. The generic extension provides a way to deal with this problem.
The user can refer to the generic implementation of an instance that he or she
provides.

In the example the instance on Expr can be written more compactly:

instance fvs Expr where
fvs (ELambda var expr) = filter ((<>) var) (fvs? expr)
fvs x = fvs{|generic|} x

The name fvs{|generic|} is bound to a function that is the generic implementa-
tion of the instance where it is defined. The code generated for the instance on
Expr is:

fvsg
Expr x = (bmapfvs isoExpr).osi fvsExpr◦ x

fvsExpr (ELambda var expr)= filter ((<>) var) (fvsExpr expr)
fvsExpr x = fvsg

Expr x

Here fvsg
Expr denotes the function generates for fvs{|generic|}. The function for

the generic representation fvsExpr◦ is generated as usually.
Another example is the mapping function for expressions

generic mapExpr a :: (Expr → Expr) a → a
instance mapExpr UNIT where

mapExpr f UNIT = UNIT
instance mapExpr Int where

mapExpr f x = x
instance mapExpr PAIR where

mapExpr fx fy f (PAIR x y) = PAIR (fx f x) (fy f y)
instance mapExpr EITHER where

mapExpr fl fr f (LEFT x) = LEFT (fl f x)
mapExpr fl fr f (RIGHT x) = RIGHT (fr f x)

instance mapExpr Expr where
mapExpr f x = f (mapExpr{|generic|} f x)

All the instances are similar to the instance of map, except for the instance on
Expr, which first maps the sub-expressions and then applies the argument func-
tion to the resulting expression. Analogously, a mapping function for a system
of mutually recursive types can be defined; a function (like Expr → Expr) is
needed for each type in the system.

With the mapping function we can define a function for constant function
elimination.

cfe :: a → a | mapExpr? a
cfe x = mapExpr? elim x
where elim (EApp (ELambda v body) arg)

| not (isMember v (fvs? body)) = body
elim expr = expr

Note the separation of concerns: the mapping function walks the recursive struc-
ture of the expression, the cfe function involves only constructors it directly
works on.

To generalize fvs one would like to implement a generic fold function, in a
way similar to map. Unfortunately, the separation of concerns cannot be done for
fold: explicit recursion is required. Another disadvantage is that the user has to
provide similar functions for different term types (e.g. for mapping type terms).
See also the discussion of “large bananas” [9] in section 7).

6 The module system

Generic definitions and generic instances are exported and imported in Clean
in the same way as classes and class instances. The Clean module system has
separate definition and implementation modules. Each logical module consists of
a definition and implementation module with the same name. Symbols defined
only in the implementation module are local to the module. Symbols defined in
the definition module are exported and can be used in other modules.

The generic extension cannot generate instances for data types that are ab-
stract in the module being compiled. It issues an error message. To generate
such an instance one would need to know the right hand side of the abstract
type. The generated code would depend on the definition of an abstract type.
So, a generic instance for an abstract type can be defined only in the module,
where the abstract type itself is defined and it’s implementation is known. The
instance can be exported from this module together with the abstract type.

We illustrate the idea by example. Generic equality is defined in module
equality. The export declaration is in the definition module equality. The imple-
mentation of eq resides in the implementation module that is not shown.

definition module equality
generic eq t :: t t → Bool
instance eq Int, UNIT, PAIR, EITHER

Definition module stack exports abstract type Stack and an instance of equality
on stacks.

definition module stack
import equality
:: Stack a
instance eq Stack

Implementation module stack contains the definition of the abstract type. The
generic instance can be successfully generated because the right hand side of the
type is available.

implementation module stack
import equality
:: Stack a :== [a]
instance eq Stack generic

A client module can call the equality function to compare abstract stacks.
Instance code for generic function g on type T is generated as a part of the

module, where the instance g T generic clause is specified. It means that if,
for instance, in two modules an equality for lists is asked to be generated, each
module will get a copy of the code. This design can lead to code growth. As a
solution to the problem, one can implement a cash of generated instances, so
that the code is shared.

Currently in Clean an instance body cannot be defined in a definition mod-
ule. It means that the instance bodies are not available to the compiler when
a client module is compiled. For instance, in the example above the body of eq
UNIT defined in the module equality is not known in the module stack. As a
consequence, the equality for units cannot be inlined. This is especially impor-
tant for generics because additional complexity introduced by the generic type
representation cannot be eliminated. In the future we plan to solve the prob-
lem by allowing instance definitions in definition modules, so that they will be
available to the optimizer.

7 Related Work

7.1 Generic Haskell Prototype

Generic Haskell is a generic extension for Haskell. The design is based on kind-
indexed types, described in [4]. The Generic Haskell compiler takes Generic
Haskell code and produces Haskell code as output. As opposed, generic extension
of Clean is a part of the Clean compiler. It makes the design and the implemen-
tation easier, because we can piggy-back on other features of the language. In
particular, we do not need to change the type system of the language.

Despite pretty different notation, generic definitions in Generic Haskell and
Clean are similar. The user provides the polykinded type and cases for sums,
products, unit, arrow and primitive types. In Generic Haskell an overloaded func-
tion cannot be defined generically. It means that, for instance, equality operator
(==) has to be defined manually. In Clean overloaded functions are supported.
For instance, the equality operator in Clean can be defined in terms of the generic
function eq:

(==) infixr 5 :: t t → Bool | eq? t
(==) x y = eq? x y

Currently Generic Haskell does not support the module system. Clean supports
the module system for generics in the same way as it does it for overloaded
functions.

Generic Haskell supports generic instances for higher-order kinded types. It
requires rank-2 type signatures and local quantification in data types. Clean
currently does not support these features, but we are busy implementing them.

7.2 Generics in Glasgow Haskell Compiler

The design of Glasgow Haskell’s generic extension is described in [3]. In GHC
generic definitions are used to define default implementation of class members.
The compiler generates the member bodies using the generic definitions. A class
can have any number of generic members. The design gives a systematic meaning
to Haskell’s deriving construct. Default methods can be derived for type classes
whose class argument is of kind ?. Other kinds are not supported. That means
that functions like mapping cannot be defined generically. See also [2].

Generic Clean supports a special generic construct that gives birth to a kind-
indexed family of classes. Each class has only one member. The generic definition
provides default implementation for members of all of these classes. For instance,
it possible in Clean to customize how elements of lists are compared:

eq?→? (λx y→eq? (length x) (length y)) [[1,2],[3,4]] [[1,1], [2,2]] ⇒ True

This cannot be done in GHC, since the equality class is defined for types of kind
?. In Clean one generic definition is enough to generate functions for all (currently
first-order) kinds. This is especially important for functions like mapping.

7.3 Dictionary Passing for Polytypic Polymorphism in SML/NJ

In [6] Chen and W. Appel describe an approach to implement specialization
of generic functions using dictionary passing. In Clean the generic extension is
based on type classes, which are implemented using dictionaries. The SML/NJ
extension requires extension of the kind system of the language. The kind of
a type indicates which generic functions are applicable for this type. The kind
determines the type of the dictionary for a data type. In Clean we do not need
to modify the kind system of the language. The dictionaries are created by the
overloading system as usually.

7.4 PolyP

PolyP [7] is a language extension for Haskell. It is a predecessor of Generic
Haskell. PolyP supports a special polytypic construct, which is similar to our
generic construct. In PolyP, to specify a generic function one needs to provide
two additional cases: for type application and for type recursion. PolyP generic
functions are restricted to work on regular types. A significant advantage of
PolyP is that recursion schemes like catamorphisms and anamorphisms can be

defined. This is possible due to explicit recursion, which causes limitation to
regular types. It remains to be seen how to support such recursion schemes in
Clean.

7.5 Dealing with Large Bananas

In [9] Lämmel, Visser and Kort propose a way to deal with generalized folds on
large systems of mutually recursive data types. The idea is that a fold algebra
is separated in a basic fold algebra and updates to the basic algebra. The basic
algebras model generic behavior, whereas updates to the basic algebras model
specific behavior. Existing generic programming extensions, including ours, allow
for type indexed functions, whereas their approach needs type-indexed algebras.
Our customized instances (see section 5) provide a simple solution for dealing
with type-preserving (map-like) algebras (see [9]). To support type-unifying al-
gebras (fold-like) we need explicit recursion.

8 Conclusions and future work

In this paper we have presented a generic extension for Clean that allows to
define overloaded functions with class variables of any kind generically. A generic
definition generates a family of kind-indexed type (constructor) classes, where
the class variable of each class ranges over types of the corresponding kind.
For instance, a generic definition of map defines overloaded mapping functions
for functors, bifunctors etc. Our contribution is in extending the approach of
kind-indexed types [4] with overloading.

Additionally, we have presented an extension that allows for customization
of generated instances. A custom instance on a type may refer to the generated
function for that type. With this feature a combination of generic and specific
behavior can be expressed.

The main problems we currently are working on and planning to work on in
the near future:

– Types of higher-order kinds. Generic Clean does not fully support types of
higher-order kinds. We are busy adding it to the compiler.

– Support for explicit recursion on types. As noted in section 7 our design
does not support recursion schemes like catamorphisms. We plan to add the
support in the future.

– Support for constructor information. In order to implement pretty printers
and parsers one needs information about the data constructors: names, ar-
ities and so on. The design described here does not keep the constructor
names in the generic representation. The support can be implemented in the
style described in [3].

– Uniqueness typing. In this paper we ignored the uniqueness typing of the lan-
guage. Though we have a working prototype of the uniqueness in polykinded
types, we are busy formalizing it.

– Optimization of the generated code. Currently our prototype lacks optimiza-
tion of the generated code. We are convinced that a partial evaluator can
optimize out the conversion code introduced by the translation of generics.
Our group is working on such an optimizer.

– Class contexts in generic types. The current design does not support context
restrictions on neither generic nor non-generic variables in the polykinded
types of the generic functions. Currently one also cannot define a generic
function using other generic functions, in the way it is done with overloaded
functions.

– Array types. The generic extension cannot generate instances for array types.

Acknowledgements. We are grateful to Sjaak Smetsers for fruitful discussions
and comments on this paper. For helpful comments we are also grateful to Peter
Achten. We would like to thank Ralf Hinze for the discussion of customized
instances.

References

1. Ralf Hinze. Polytypic programming with ease. Technical Report IAI-TR-99-2, In-
stitut für Informatik III, Universität Bonn, February 1999

2. Ralf Hinze. A New Approach to Generic Functional Programming. In Proceed-
ings of the 27th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Boston, Massachusetts, January 19-21, 2000.

3. Ralf Hinze and Simon Peyton Jones. Derivable Type Classes. In Graham Hutton,
editor, Proceedings of the Fourth Haskell Workshop, Montreal, Canada, September
17, 2000

4. Ralf Hinze. Polytypic values possess polykinded types. In Roland Backhouse, J.N.
Oliveira, editors, Proceedings of the Fifth International Conference on Mathemat-
ics of Program Construction (MPC 2000), Ponte de Lima, Portugal, July 3-5, 2000.

5. Ralf Hinze. A Generic Programming Extension for Haskell In Erik Meijer, editor,
Proceedings of the Third Haskell Workshop, Paris, France, September 1999. The
proceedings appear as a technical report of Universiteit Utrecht, UU-CS-1999-28.

6. Juan Chen and Andrew W. Appel. Dictionary Passing for Polytypic Polymorphism
Princeton University Computer Science TR-635-01, March 2001.

7. P. Jansson and J. Jeuring, PolyP - a polytypic programming language extension,
POPL ’97: The 24th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, ACM Press 470–482, 1997.

8. M. J. Plasmeijer, M.C.J.D. van Eekelen Language Report Concurrent Clean.
Version 1.3. Technical Report CSI R9816, Faculty of mathematics and In-
formatics, Catholic University of Nijmegen, June 1998. Also available at
www.cs.kun.nl/ clean/Manuals/manuals.html

9. Ralf Lämmel, Joost Visser, and Jan Kort. Dealing with large bananas. In Johan
Jeuring, editor, Workshop on Generic Programming, Ponte de Lima, July 2000.
Technical Report UU-CS-2000-19, Universiteit Utrecht.

