Term Graph Rewriting and Mobile Expressions
in Functional Languages

Rinus Plasmeijer and Marko van Eekelen

Computing Science Institute
University of Nijmegen, the Netherlands
{rinus, marko}@cs.kun.nl

Abstract. CLEAN is a functional language based on Term Graph Rewrit-
ing. It is specially designed to make the development of real world ap-
plications possible by using a pure functional language.

In this paper we first give a short overview of the most important basic
features of the language CLEAN among which it’s Term Graph Rewriting
semantics. Of particular importance for practical use is CLEAN’s unique-
ness typing enabling destructive updates of arbitrary objects and the
creation of direct interfaces with the outside world, all within a purely
functional framework.

After this overview we will focus on a new language feature, which is
currently being added. The new version of CLEAN offers a hybrid type
system with both static as well as dynamic typing. Expressions, which
are dynamically typed, are called Dynamics. With help of Dynamics
one can create mobile expressions, which can be passed to other CLEAN
applications. Dynamics can be used to make plug-ins which will be type
checked at run-time. Typically, 30% of the code of an application is
needed for storing (converting data to string) and retrieving (by means
of a parser) of data. With Dynamics one can store and retrieve not only
data but also code (!) with just one instruction.

The implementation effort needed to support Dynamics is quite large:
it not only involves dynamic type checking but also dynamic type unifi-
cation, dynamic linking, just-in-time compilation, coding techniques for
data and version management of code segments.

1 Clean: a functional language for real world applications

The CLEAN [23] system includes a very fast compiler (typically it compiles one
to two orders of magnitude faster than comparable compilers for pure and lazy
functional languages) and it generates state-of-the-art, native code. The system
comprises an Integrated Development Environment, an editor, a project man-
ager, a linker, a time and space profiling tool and a tool for creating interfaces to
C. Almost all of this software is written in the language CLEAN itself. CLEAN is
available on a large variety of platforms such as WINDOWS "95 / '98 / °2000 / NT,
MAcOS, UNiX (SuN) and LINUX (PC). The CLEAN software can be downloaded
from the net (www.cs.kun.nl/"clean).

CLEAN is currently mainly used in R&D environments. We have over 1000
administrated users (about 1/3 from industry). There is a CLEAN mailing list via
which users frequently communicate about the use of Clean. CLEAN is commer-
cially exploited by the Nijmegen University spin-off company HILT. Among the
commercial users of CLEAN are the Canadian Telecom Company Newbridge,
Microsoft, the Dutch companies Philips, ABN-AMRO, Hollandse Signaal and
the Dutch Department of Public Works.

Applications written in CLEAN include a software development monitoring
tool, a Java Applet generator, a music composition program, a machine code
linker, a platform independent I/O library, an editor, an ordered linear resolution
prover, an integrated software development environment, a projective geometry
demonstration program, an audio-set software generation and configuration tool,
a sentence generator for spoken text, a network process profiling tool, a traffic
light simulation tool and a game library for the development of 2D platform
games [26].

Since the CLEAN I/O library is available on a large variety of platforms, it
provides a platform independent interface for reactive CLEAN programs. Inter-
active window based CLEAN programs can be ported to any of these platforms
without any modification of source code. Programs retain the specific “look and
feel” offered by the platform being used.

HASKELL [13] and CLEAN [9] [20] [22] developed independently as descen-
dants of the language MIRANDA [24] and influenced by the language Gopher
(type classes for overloading [16]). The first publication on CLEAN dates back to
1987 [9] at the Functional Programming and Computer Architecture conference
in Oregon where the HASKELL committee was formed.

CLEAN is a state-of-the-art lazy and pure functional language and as such it
offers features like higher order functions, currying, lazy evaluation, (cyclic) shar-
ing, lambda expressions and local definitions (where and let), guards and case
expressions, patterns, list and array comprehensions, strong typing with Mil-
ner/Mycroft type inference (with polymorphic types, abstract types, algebraic
types, synonym types) extended with existentially quantified types, overloading
via type classes and type constructor classes, predefined types and type construc-
tors (integers, reals, Booleans, characters, files, lists, tuples, records, arrays),
strictness annotations in (function and data) type definitions, separate compi-
lation of modules (with implementation and definition modules with implicit or
explicit imports). Apart from small differences the most important differences
between CLEAN and HASKELL are that CLEAN has graph rewriting semantics,
offers unique typing, and has a sophisticated library for defining window based
interactions. These distinctive features of CLEAN are explained in more detail
below.

2 The importance of graph rewriting

There are several models of computation that can be viewed as a theoretical
basis for functional programming. The lambda calculus (see [6]), being a well-

understood mathematical theory, is traditionally considered to be the purest
foundation for modern functional languages like SCHEME [11], ML [10], HASKELL
[13], MIRANDA [24] and CLEAN [9] [20] [22]. And indeed, the merits of many pro-
gramming languages concepts have successfully been investigated in the (typed)
lambda calculus. However, all state-of-the-art implementations of functional lan-
guages are not based on lambda calculus but on graph rewriting. Consider with
A-calculus semantics the following definition: square x = x * x. Then, reduc-
ing the following function application square (1 + 1) would give (1 + 1) =*
(1 + 1) with multiple copies of the argument expression. In practice such an
argument may contain a huge calculation, which is copied many times. Graph
rewriting semantics avoid this multiple evaluation by sharing the argument in
the graph structure. Since the argument is then addressed via two pointers, the
evaluation takes place only once. The resulting evaluation order corresponds to
call-by-need semantics.

Clearly, programmers writing real world applications will have to address
much more practical aspects that are all related to graphs and graph rewriting:
they worry about data structures, sharing, cycles, space consumption, efficiency,
updates, input/output, interfacing with C, and so on. Many of these problems
and solutions can be understood better when the semantics of the functional
language are extended incorporating graph structures. This is the reason we have
sought for a model of computation that is sufficiently elegant and abstract, but
at the same time incorporates mechanisms that are more realistic with respect to
actual implementation techniques. Graph rewriting systems [7] extend A-calculus
with the explicit notions of pattern matching and sharing.

Graph rewriting has been proven to serve very well as a uniform framework:
the programmer uses it to reason about the program and to control time and
space efficiency of functions and graph structures; the implementer of the com-
piler uses it to design optimisations and analysis techniques that are correct with
respect to the graph rewriting theory; the theoretician uses it to build theory for
complex analysis of graph rewriting systems used in concrete implementations;
the language designer uses it to base the functional language constructs directly
on the graph rewriting semantics.

In our opinion it was the availability of this common framework in CLEAN
that played the key role in various activities that usually are far apart: extending
the language with new vital constructs that otherwise would never have been
found, keeping the compiler fast and correct, enabling the programmer to write
efficient programs and keeping the theory to the point.

The programmer’s choice of representation, e.g. the explicit use of a cycle,
can drastically influence the algorithmic complexity (e.g. bringing it down from
exponential to polynomial). The use of graph rewriting semantics makes it pos-
sible for the programmer to model this choice.

3 The importance of purity

An important aspect of CLEAN is that it is a pure functional language, like M1-
RANDA and HASKELL. Examples of impure functional languages are Lisp [18§],
ScreEME [11], ML [10], CAML [17] and ERLANG [5]. In a pure language the re-
sult of a function application will, under all conditions, be determined solely by
the value of its arguments. This key property is called referential transparency.
A consequence is that it never makes any difference where and under what con-
ditions a function is applied. A function will always react in exactly the same
way. This has important consequences. Assignments do not exist and side ef-
fects cannot occur. A functional programmer can look at a piece of code and
simplify or change it without the need to carefully scan every other function or
procedure for context dependency. Reasoning about the result of a function can
be done by uniformly substituting its definition at the place of the application
regardless of the context. A C or JAVA programmer will always risk the surprise
that calling the same function twice has totally different effects. In CLEAN, par-
allel and distributed evaluation of any function application is allowed without
worrying about changing the outcome of a program. In mathematics referential
transparency and uniform substitution are two of the most fundamental prop-
erties of reasoning which are used in all fields of mathematics (and which have
been used extensively by every high school student).

One might wonder how on earth one can write serious applications in a
functional language and retain purity? For instance, one certainly would like to
be able to change the contents of a file in a destructive way. Let’s look at a simple
example: assume that one would allow an impure function fwritec, which as a
side effect appends a character to a file on disk returning the modified file. For
example, the function fwritec can be used to construct the following function
AppendAandB which returns a tuple:

AppendAandB file
= (fwritec ’a’ file, fwritec ’b’ file) // illegal in Clean !

The contents of the resulting tuple will depend on the order in which the
two applications of fwritec will be evaluated. If fwritec ’a’ file is evaluated
before fwuritec ’b’ file then ’a’ is appended to the file before ’b’. If the
function applications are evaluated the other way around ’b’ will be written
before ’a’. This violates the rule of referential transparency: the result of a
function application is not solely determined by the value of the arguments but
also depends on the context, in this case the order in which the functions are
evaluated. The purity is lost and the example illustrates that it is indeed hard
to reason about the effect of such functions.

In the first generation of functional languages one simply did not know how
to solve this problem and gave up purity. With this many nice mathematical
properties are lost as well: mathematical analysis and every day reasoning about
a program becomes almost as hard as in imperative languages such as C. One
has to establish for each function whether it has such an impure aspect (or calls
a function which has) before one can continue with standard reasoning.

If one is not prepared to give up purity then definitions such as AppendAandB
have to be made impossible. Observe that the problem is caused by having
several dangerous function applications (fwritec), which can be applied at the
same time on the same object (file).

The solution taken in CLEAN is based upon the observation that the problem
does not occur when there is only one pointer to an updateable object (such
as a file). The previous example is disallowed because it makes two copies of
the file pointer. A CLEAN programmer can explicitly pass around destructively
updateable objects like any other object but he can only do this in a safe manner
such that no violation of referential transparency is possible. This is guaranteed
by the uniqueness type system of CLEAN.

In HASKELL the problem is solved in the following way. A program yields a
higher order function (e.g. fwritec ’a’) and the system applies this function
to the hidden state (via a so-called monad) to be updated (e.g. £ile). By using
function composition a whole sequence of state transitions can be requested. This
system is simple but has the disadvantage that all objects to be destructively
updated must be maintained by the system in a single state, which is kept hidden
for the programmer. Clean does not have this restriction. One can have arbitrary
states, which can be passed around explicitly. Such a state can be fractured into
independent parts (e.g. distinct variables for the file system and the event queue).
For a comparison on the two approaches see [25].

4 Uniqueness typing

In order to determine (and specify) that an argument is passed in such a way that
the required updates are possible and referential transparency is maintained,
a type system has been added to CLEAN which derives so-called uniqueness
properties [8]. A function is said to have an argument of unique type if there
will be just a single reference to the argument upon evaluation of the function.
Uniqueness typing can be seen as linear logic [14] extended with sub typing and
with a strategy-aware reference analysis. It is important to realize that talking
about references to nodes is very natural in CLEAN since CLEAN is based on
term graph rewriting. From its semantics it directly follows that it is safe for
the function to re-use the memory consumed by the argument to construct the
function result. For file I/O this means that the function fwritec should demand
its second argument to be of unique type. In the type this uniqueness is expressed
with an * attached to the conventional type. Consequence: the result of applying
fwritec (the new file) can be constructed by destructively updating the unique
argument (the old file) as one is used to.

The function AppendAandB defined previously will not type check. But we
can easily write a function that performs the two updates in sequence.

fwritec:: Char *File -> xFile
// type of predefined function which appends a character to a file

AppendAbeforeB:: *File —-> *File

AppendAbeforeB file = fileAB

where
fileA = furitec ’a’ file // append ’a’ to the file
fileAB = fwritec ’b’ fileA // then append ’b’ to the file

To be able to write these definitions in a more natural order, CLEAN offers
a special let expression, indicated by a #. It’s scope rules allows to reuse names.
The function AppendAbeforeB can also be defined as follows:

AppendAbeforeB:: *File -> *File
AppendAbeforeB file

file = fwritec ’a’ file // append ’a’ to the file
file = fwritec ’b’ file // then append ’b’ to the file
= file // and return the resulting file

The uniqueness type system is an extension on top of the conventional type
system. The uniqueness type attributes can be inferred or checked by the com-
piler, as all other type information. Offering a non-unique object to a function
that requires a unique one is not type correct. Offering a unique argument if a
function requires a non-unique one is fine: the type system can coerce a unique
object to a non-unique one.

4.1 Using Uniqueness Information

The CLEAN uniqueness type system is very powerful and flexible, it can be used
to solve several problems.

First of all it can be used for interfacing the pure functional world in an
efficient way with the impure world outside. For any (impure) foreign function,
method or procedure an interface function can be written in CLEAN. The object
updated destructively in the imperative world can be protected by a uniqueness
type in the functional world ensuring that within CLEAN the object can only
single-threadedly be passed around from function to function retaining the purity
of the language. In this way external objects which have an inherently unique
physical representation (such as a file) can be rewritten, a record in a database
can be updated, a picture in a window on a screen can be animated. For the
language C a tool is available to easily generate interface functions.

Uniqueness typing can also be used to make a functional program more ef-
ficient allowing reusing memory of predefined and user defined data structures.
This can give a huge gain in efficiency. For instance, CLEAN offers the predefined
type array and functions with which unique arrays can be destructively manip-
ulated (as efficient as in C, about 20 times faster than arrays in the Glasgow
HASKELL compiler [15]).

CLEAN’s “unique” features have made it possible to predefine (in CLEAN)
a sophisticated and efficient I/O library giving a program access to a unique
outside world and its unique sub-components (e.g. file system, event queue, op-
erating system). The I/O library [2] [3] [4] written in CLEAN enables a CLEAN

programmer to specify interactive window based 1/0 applications on a very high
level of abstraction.

5 The importance of mobile expressions

With uniqueness typing, Input/Output can be incorporated in a pure functional
language without any problem. Once you have got the technical ability to per-
form I/0, you want to use the power of functional languages to do it more
elegantly and easily as one is traditionally used to.

In the average application, 30% of the program code is used for doing triv-
ial I/0. When data is written to a file it has to be converted to an ASCII
string. When data is read one needs a parser to check the input string. Although
functional languages offer powerful language features to make life easier (type
classes for overloading of I/O primitives, parser combinators for easy construc-
tion of parse functions), still a lot of code has to be written. Would it not be nice
to read and write complicated data structures from and to a file with just one in-
struction? In the functional world the difference between data and code is much
smaller than in the traditional imperative world: functions are first class citizens.
So, why not have the possibility to communicate any expression (containing data
as well as code) with just one instruction? And why not communicate with the
same ease an arbitrary expression from one (distributed executing) CLEAN ap-
plication to another? Such mobile expressions can be used to realize plug-ins
which can be dynamically added to a running application.

5.1 Cleans’ Hybrid Type System

When distributed CLEAN applications communicate expressions with each other,
it is of course necessary to guarantee the type safety of the messages. Distributed
applications are generally not developed at the same moment such that the
consistency of the messages communicated between them cannot be checked
statically by inspecting the source code. So, we need a dynamic type system
to check the type consistency of the mobile expressions at run-time. But we do
not want the entire CLEAN language to become a dynamically typed system as
well. Static type checking has too many advantages, which we want to retain:
error reporting in a stage as early as possible, program code is better readable,
much more efficient code can be generated. To get the best of both worlds we
need a hybrid type system in which some parts of a program are type checked
dynamically, while the largest part is still checked statically.

The concept of objects with dynamic types, or dynamics for short, as intro-
duced by Abadi et al. [1], can provide such an interface ([21]). We distinguish
between expressions on which only static type checks are performed (statics) and
expressions on which dynamic type checks are performed (dynamics). Values of
this dynamic type are, roughly speaking, pairs of a value and an encoding of its
corresponding static type, such that both the value as well as its type can be
inspected at run-time.

From a statically point of view all dynamics belong to one and the same
static type: the the type Dynamic. Applications involving dynamics are no longer
checked statically, but type checks are deferred until run-time. Almost any
CLEAN expression can be explicitly projected from the statical into the dy-
namical world and vice versa.

5.2 Converting Statics into Dynamics

The projection from the statical to the dynamical world is done by pairing
an expression with an encoding of its type. The expression is wrapped into a
container. The type of the expression is hidden from the statical world and the
container receives the statical type Dynamic.

A static expression of type T can be changed into a dynamic expression of
static type Dynamic using the keyword dynamic. In principle, an expression of
any type can be turned into a dynamic, e.g. functions of polymorphic type and
functions working on unique types. Examples of expressions of type Dynamic
are:

(dynamic True :: Bool) :: Dynamic
(dynamic fib :: Int -> Int) :: Dynamic
(dynamic reverse :: [a] -> [a]) :: Dynamic

For instance, in the example above, the function reverse of static polymor-
phic type [al->[a] is converted into a dynamic using the keyword dynamic. The
resulting expression (the container containing the pair reverse and the encodng
for its type [a]l->[a] to be used for type checking at run-time) is of static type
Dynamic.

Notice that CLEAN has a type inferrencing system, so none of the static types
need to be specified explicitly. Static types can be left out and will automatically
be inferred by the static type system. So, instead of the expressions above, one
can also just write down:

dynamic True
dynamic fib
dynamic reverse

5.3 Converting Dynamics into Statics

Next to projection into the dynamic world, there has to be a mechanism to in-
spect expressions of type Dynamic and retrieve their original encoded static type
such that this type information can be used in the statically typed world again.
For this purpose the pattern match mechanism of CLEAN has been extended
to describe pattern matching on types as well. An example of such a dynamic
pattern match on types is:

SnapShot :: Dynamic -> JPeg

SnapShot (pict ::JPeg) = pict

SnapShot (movie::MPeg) = toJPeg movie
SnapShot else DefaultJPegPicture

If the type encoded in the dynamic matches the statically specified type in the
pattern, and all other patterns match as well, the corresponding rule alternative
is chosen. The type demanded in a pattern on the left-hand-side can now safely
be assumed in the right-hand-side of the corresponding rule alternative. The
type correctness of this can all be checked statically, since the type pattern is
explicitly specified in the pattern and therefore known statically.

Type Pattern Variables The type patterns need not fully specify the de-
manded type: they may include type pattern variables, which match any sub
expression of the dynamic’s type. If such a match has been successful, the sub
expressions are bound to the type pattern variables they have matched. So, a
full-blown run-time unification is used during matching of dynamics. A success-
ful unification leads to a substitution for the type pattern variables and possibly
for the (polymorphic) variables of the actual type.

The following function is polymorphic in the types of its arguments (and its
result). It checks whether its first argument is a function and whether the type
of its second argument matches the input type of that function:

dynamicApply :: Dynamic Dynamic -> Dynamic

dynamicApply (f::a->b) (x::a) = dynamic (f x::b)
dynamicApply else = dynamic "dynamic type error"
Now

Start = dynamicApply (dynamic fib::Int->Int) (dynamic 7::Int)
will reduce to

dynamic 21::Int

and

Start =
dynamicApply (dynamic reverse::[a]l->[a]l) (dynamic [1,2,3]::[Int])

will reduce to
dynamic [3,2,1]::[Int]

In Pil [21] it is shown that the type patterns to match on can be generalized
(by using a special kind of overloading) such that type restriction imposed on a
dynamic type is determined by the static context in which the function is used
(so called Type Dependent Functions). Type Dependent Functions allow us to
bring the types of dynamics locally specified into the scope of the type of the
corresponding function.

lookup :: [Dynamic] -> a | TC a

lookup [(x::a):xs] = x

lookup [x:xs] = lookup xs

lookup [] abort "dynamic type error in lookup function"

This more powerful form of abstraction can be very convenient. For instance,
the lookup function above will lookup the first element in the list of dynamics
that is of the required type. This type will depend on the static type required
by the environment in which the lookup function is used. The type variable
a will be unified with a type that depends on the application of lookup. The
encoding of this type (which is indicated by the type class constructor TC a) is
passed as additional argument to lookup such that it can be used in the pattern
match of the first function alternative. As a consequence, lookup dynamiclist
+ 3 will add 3 to the first dynamic in the list containing an integer value. But,
sinus (lookup dynamiclist) will take the sinus of the first real value stored
in the list of dynamics. So, type dependent functions allow a flexible integration
of statically and dynamically typed expressions. The static context can impose
restrictions on the dynamic type being demanded.

5.4 Communicating Dynamics

A programmer can store a dynamic to a file in a similar way as he can write a
character to a file. It can be done with just one function call. Reading a dynamic
from a file can be done in a similar way too.

writeDynamic:: Dynamic *File -> *File

// predefined function which appends a dynamic to a file
readDynamic:: *File -> (Bool, Dynamic, *File)

// predefined function which reads a dynamic from a file
sendDynamic:: Dynamic *Channel -> *Channel

// predefined function which sends a dynamic across a channel

Dynamics are very useful for the communication between distributed pro-
grams. Any data structure or function can via a dynamic be communicated over
one and the same channel. A dynamic can be send by applying the function
sendChannel to the communication channel (which e.g. can be a TCP/IP con-
nection). To receive a dynamic the programmer has to define a callback function
that will be applied automatically when the message has been received. These
communication primitives are offered by the standard CLEAN I/O library. The
receiving application has to test on the actual type stored in the dynamic as
shown in the previous section.

5.5 Implementation

Dynamics are very convenient for the programmer, but hard to implement, in
particular in a heterogeneous distributed environment.

First of all one needs a platform independent format for storing and retrieving
of dynamics. A dynamic in a program consists of an expression and a decoding
of the static type of that expression.

The expression is a term graph which might contain shared sub graphs and
which can be cyclic as well. To avoid duplication of work it is important that
this sharing is maintained. One can imagine several storage schemes to store a
dynamic. One might optimise for compactness or for ease of access. Or one might
prefer lazy reading instead of eager reading e.g. when the dynamic to read in is a
huge structure. So, although one can store and retrieve a dynamic with just one
instruction, several options for doing that need to be given to the programmer.

When a dynamic is read in, the type has to be checked. To check for type
consistence, not only the type of the expression itself has to be available. Since
user-defined types are possible in the form of algebraic data types, one also has
to ensure that the definition of the types in the program and the definitions of
the types used in a received dynamic are identical. So, not only the type of the
expression, but all type definitions involved have to be stored with it as well.
And then, of course, dynamic typing need to be implemented, including dynamic
unification and error handling.

But the most complicated things to deal with are caused by the fact that
dynamics can contain partially applied functions as well as unevaluated expres-
sions (since CLEAN is a lazy language). To be able to evaluate a function stored
in a dynamic, a program needs the corresponding code. This code should be
available in a platform independent format. Fortunately, we have such a format.
The CLEAN compiler generates platform independent abstract machine code,
ABC-code. The ABC-code is a kind of byte code, which is compiled by the code
generator to native machine code (object code). So, if a dynamic is communi-
cated from one application to another, also the code has to be made available.
If the applications run on the same platform, the corresponding object code can
be used. Otherwise the ABC-code has to be transmitted and just-in-time com-
piled to object code. A dynamic linker has been developed (in CLEAN) which
can dynamically link the code to the running receiving application. In this way
one can add plug-ins to a running CLEAN application and use the dynamic type
system to test the type correctness.

Finally, another important implementation issue is the version management
of dynamics. One can imagine a dynamic stored somewhere in a file in which
some function is used. Now, suppose that one discovers a bug in the function
definition and repairs it. When the dynamic is now being used one also would
like to incorporate the new function definition. However, one can also imagine a
complete new version of the software involved. Using the new definition instead
of the original one might now become dangerous. Concluding, one needs a version
management system to determine which version of the code should be used.

6 Current situation and future developments

Dynamics are part of the new CLEAN system (version 2.0). Although the im-
plementation is not finished yet, most kernel facilities (dynamic type checking,
dynamic unification, just-in-time code generation, dynamic linking) have been
implemented and work. We believe that the availability of dynamics open a new
world of dynamically extending applications. For instance, one can use it to
make a kernel operating system, which is initially very small but which grows
when new facilities are being used. One can also use it to dynamically repair or
modify an application which cannot be stopped. Examples of these are telephone
switch systems, airline reservation systems, or the communication software in a
satellite. One can use to store the complete status of a program such that one
can pick up the work the next day in exactly the state as one left it (persistent
programs). Or, one can simply use to store and retrieve the settings of a program
with just one function call or fetch a plug-in from the internet.

The new CLEAN system will offer many facilities: sophisticated libraries,
which optionally can be included, static linking, dynamic linking, profiling tools,
a debugging tool and even a dedicated proof system is under development [19].
To be able to use all these facilities and tools in a user-friendly way, a complete
new Integrated Development System has been designed and implemented which
makes use of the new I/O library. All the software is written in CLEAN. See our
WWW-pages (www.cs.kun.nl/ clean) for the latest news.

References

1. Abadi, M., Cardelli, L., Pierce, B. and Plotkin, G. (1991). Dynamic Typing in a
Statically Typed Language. ACM Transactions on Programming Languages and
Systems, 13(2):237-268.

2. Achten, P.M., and Plasmeijer, M.J. (1995). The ins and outs of CLEAN I/O. J.
Functional Programming, 5(1):81-110.

3. Achten, P.M. (1996). Interactive Functional Programs - models, methods,and im-
plementations. Ph.D., University of Nijmegen.

4. Achten, P., and Plasmeijer, R. (1997). Interactive Functional Objects in CLEAN. In
Proc. 1997 Workshop on the Implementation of Functional Languages (IFL’97).
(Hammond, K., Davie, T., and Clack, C. eds.), St.Andrews, Scotland. pp. 387-406.
A revised version will appear in the proceedings, LNCS 1467, Springer Verlag.

5. Armstrong, J., Virding, R., Williams, M. (1993). Concurrent Programming in ER-
LANG. Prentice Hall.

6. Barendregt, H.P. (1984). The Lambda Calculus - Its Syntaz and Semantics (revised
edition). Studies in Logic and the Foundations of Mathematics 103. Elsevier Science
Publishers 1984.

7. Barendregt, H.P., Eekelen van, M.C.J.D., Glauert, J.R.W., Kennaway, J.R., Plas-
meijer, M.J., and Sleep, M.R. (1987). Term Graph Rewriting. In Bakker, J.W.
de, Nijman, A.J., and Treleaven, P.C. eds. Parallel Architectures and Languages
FEurope, Eindhoven, The Netherlands, LNCS 259, Vol.II. Springer-Verlag, Berlin,
pp. 141-158.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

. Barendsen, E., and Smetsers, S. (1996). Uniqueness typing for functional languages

with graph rewriting semantics. Mathematical Structures in Computer Science,
6:579-612.

. Brus, T., Eekelen, M.C.J.D. van, Leer, M.O. van, and Plasmeijer, M.J. (1987)).

CLEAN: A Language for Functional Graph Rewriting. In Kahn, G., ed. Third In-
ternational Conference on Functional Programming Languages and Computer Ar-
chitecture, Portland, Oregon, USA, LNCS 274, Springer-Verlag, pp. 364-384.
Harper, R., MacQueen, D., and Milner, R. (1986). Standard ML. Edinburgh Uni-
versity, Internal report ECS-LFCS-86-2.

Harvey, B. and Wright, M. (1994). Simply Scheme. MIT Press.

Hoon, W.A.C.A.J. de, Rutten, L.M.W.J., and Eekelen, M.C.J.D. van (1995).
Implementing a Functional Spreadsheet in CLEAN. J. Functional Programming,
5(3):383-414, July.

Hudak, P., Peyton Jones, S., Wadler, P., et al., (1992). Report on the Programming
Language HASKELL. ACM SigPlan Notices 27, (5), pp. 1-164.

Girard, J.-Y. (1987). Linear Logic. Theoretical Computer Science, 50: 1-102, 1987.
Groningen, J.H.G. van (1996). The Implementation and Efficiency of Arrays in
CLEAN 1.1. In Kluge, W., ed. Implementation of Functional Languages (Selected
papers of 8th International Workshop, IFL96, Bad Godesberg, Germany). LNCS
1268, pp. 105-124. Springer Verlag.

Jones, M.P. (1995). A system of constructor classes: overloading and implicit
higher-order polymorphism, J. Functional Programming, 5(1):1-37, January.
Leroy, X. (1995). La systeme CAML Special Light: modules et compilation efficace
en CAML Research Report 2721, INRIA, November.

McCarthy J. (1960). Recursive functions of symbolic expressions and their compu-
tation by machine. Comm ACM, 4:184-195.

de Mol M. (1998). Clean Prover System. Master Thesis no. 442, University of
Nijmegen, 1998.

Nocker, E.G.J.M.H., Smetsers, J.E.-W., Eekelen, M.C.J.D. van, and Plasmeijer,
M.J. (1991). Concurrent CLEAN. In Aarts, E.H.L., et al., eds, Parallel Architectures
and Languages Europe, June, Eindhoven, The Netherlands. LNCS 506, Springer-
Verlag, pp. 202-219.

Pil, M. (1996). First Class File I/O. In Kluge, W., ed. Implementation of Functional
Languages (Selected papers of 8th International Workshop, IFL96, Bad Godesberg,
Germany). LNCS 1268, pp. 233-246. Springer Verlag.

Plasmeijer, M.J. and van Eekelen, M.C.J.D. (1993). Functional Programming and
Parallel Graph Rewriting. Addison-Wesley.

Plasmeijer, M.J. and van Eekelen, M.C.J.D. (1998). CLEAN 1.3 Language Report.
Technical Report, www.cs.kun.nl/ " clean. Nijmegen.

Turner, D.A. (1985). MIRANDA: a non-strict functional language with polymorphic
types. In Functional Programming Languages and Computer Architecture, Nancy,
France (Jouannaud, J.P., ed.), LNCS 201, pp. 1-16. Berlin: Springer-Verlag.
Wadler, Ph. (1997). How to Declare an Imperative. ACM Computing Surveys,
29(3):240-263.

Wiering, M., Achten, P., Plasmeijer, R. (1999). Using Clean for Plastform games.
In Koopman, P., ed. Implementation of Functional Languages, 11th International
Workshop, IFL99, Lochem, The Netherlands, Internal Report University of Ni-
jmegen, pp. 144-155. A revised paper will appear in the LNCS series on this work-
shop.

