
Optimising Recursive Functions Yielding
Multiple Results in Tuples in a Lazy Functional

Language

John H.G. van Groningen?

University of Nijmegen, Department of Computer Science, Toernooiveld 1, 6525 ED
Nijmegen, the Netherlands johnvg@cs.kun.nl

Abstract. We discuss a new optimisation for recursive functions yield-
ing multiple results in tuples for lazy functional languages, like Clean
and Haskell. This optimisation improves the execution time of such func-
tions and also reduces the amount of memory allocated in the heap by
these functions, which reduces garbage collection costs. In some cases
execution time is improved by more than a factor of two and allocation
costs by a factor of four. Furthermore, the space leak that is caused by
selector nodes is removed.
This is achieved by reusing nodes allocated in the previous iteration of
the recursion to create the nodes for the next iteration, by updating
these nodes. Only the parts of the nodes that have changed are updated.
Because of these updates, the code that is used to select an element of a
tuple is not executed anymore for many selections, because the selector
node was overwritten with a new selector node or the result before it is
evaluated.

1 Introduction

In lazy functional programming languages functions yielding multiple results
often yield these results in a tuple. Unfortunately, current compilers do not gen-
erate very efficient code for such functions. Compilers usually generate code that
evaluates the result of a function to root normal form. So if the result of a func-
tion is a tuple denotation, the elements of the tuple are not evaluated, because
of laziness. Therefore often thunks have to be created for the elements of the
tuple. Furthermore, because the elements of the tuple are in lazy contexts, func-
tion arguments can usually be evaluated only by pattern matching and guards.
Therefore few arguments of such a function are strict, so strictness analysis does
not help much.

Of course, for other lazy data structures we have these problems as well,
but there is another reason for inefficient compilation of tuples: lazy pattern
matching. Because matching of tuples always succeeds, this is often done in a let
or where binding, which uses lazy pattern matching, instead of in the pattern
of a function definition or case expression, which uses strict pattern matching.
? Supported by STW and Appligraph

To compile a lazy pattern match of a function call yielding a tuple, the compiler
has to create a thunk for the function call, and for each element of the tuple (if
it is used) a thunk that selects the appropriate element of the tuple. Creating all
these thunks can be avoided if the compiler can determine that at least one of
the elements of the tuple, or the tuple itself, needs to be evaluated to compute
the result (reduced to root normal form) of the function. This could happen
when a guard uses some elements of the tuple. But often this optimisation is not
possible, and all these thunks have to be created in the heap.

For example, a function that splits a list in a list with smaller elements and
a list with larger (or equal) elements (in Clean):

split v [e:l]
| e < v

= ([e:small],large)
| otherwise

= (small,[e:large])
where

(small,large) = split v l
split v [] = ([],[])

To compile (small,large) = split v l the compiler generates code that
allocates three thunks in the heap: a split v l thunk, a thunk to select the first
element of the tuple, and a thunk that select the second element of the tuple
(see lower part of figure 1).

To show how inefficient this is, we use an example. The following function
sorts a list using quicksort (and appends the list in the second argument):

quick_sort [e:l] t
= quick_sort small [e: quick_sort large t]
where

small = [v \\ v<-l | v<e]
large = [v \\ v<-l | v>=e]

quick_sort [] l = l

The list comprehensions that compute small and large both traverse the
list l. We would like to traverse this list once, and compute both the smaller
and larger elements during this traversal to improve performance. To do this we
uses the split function defined above:

quick_sort [e:l] t
= quick_sort small [e: quick_sort large t]
where

(small,large) = split e l
quick_sort [] l = l

However, this ’optimised’ version is not faster but slower. Sorting a list of
10000 integers 50 times now takes 8.05 seconds instead of 4.53 seconds.

The disappointing performance is caused by the laziness resulting from the
(lazy) tuple result and the lazy tuple pattern match of split e l’s result.

In Clean, a programmer can prevent this problem by making the tuple ele-
ments yielded by split strict using annotations in the type of split, but this
changes the semantics of this function, and could in general result in using more
memory or even in a non terminating or slower program.

There is yet another problem with the way we have compiled the lazy pattern
match on tuples: we have introduced a space leak [2, 8, 4]. If during execution
of the program, a function is evaluated that yields a tuple for which there are
selector nodes, the selector nodes are not immediately evaluated. Usually the
function will be evaluated because one of the selector nodes is evaluated, this
selector node is updated with the value of the element, but all the other selector
nodes are not evaluated. So all the other selector nodes still contain a reference
to the whole tuple, including the element for which the selector node was already
updated. So if the updated selector node no longer has references, we have a
(temporary) space leak, because there are still references to the element from
the other selector nodes.

To prevent such space leaks, the garbage collector could be modified to recog-
nise nodes that select an element of a tuple node [10, 9], and move the references
of the selector nodes to the element, update the selector node with the selected
element, or update the node with an indirection to the element. This is imple-
mented in the garbage collector of the Clean compiler.

Another way to prevent this space leak, is by inserting functions that update
all selector nodes with the selected element or with an indirection to that element
when one of the selector nodes is evaluated [7]. This unfortunately increases the
memory use by the program, because extra nodes are allocated for these update
functions, and is probably slower. The Chalmers Haskell-B compiler can generate
these update functions, but does not do this by default.

2 New Optimisation

In this section we will present an optimisation for many recursive functions
yielding tuples that improves the execution time of such functions and also fixes
the space leak discussed above. This optimisation will be explained using the
function split as example.

Consider that the function split (see Sect. 1) is called and the guard succeeds
(because e < v), then the code for split will create four new nodes in the heap,
and update the root node of split with a tuple node. This graph is shown in
Fig. 1.

Assume that later the just created split node is evaluated. This will happen
if one of the selector nodes (SEL 1 or SEL 2) that select from split are evaluated.
We now assume that the guard fails (because not (e < v)). Then again four new
nodes are created in the heap, and the root node (the SPLIT node) is updated
with a TUPLE node. The resulting graph is shown in Fig. 2. Because the evaluation
of the SPLIT node was started by one of the selector nodes, this selector node

TUPLE
�
? ��

?
CONS
�
?

SEL 1 ��
?

SEL 2 ��
?

SPLIT

Fig. 1. Graph after calling split

would normally be updated with the selected tuple element (after evaluating this
element). In this case this would be with a SEL 1 node (for the SEL 1 node) or
a CONS node (for the SEL 2 node). But we will not show this. The selector nodes
have an unused second argument so that they can be updated with a CONS node
with two arguments.

TUPLE
�
? ��

?
CONS
�
?

SEL 1 ��
?

SEL 2 ��
?
TUPLE %'

?

��
?

SEL 1 ��
?

CONS
�
?

SEL 2
�
?

SPLIT

Fig. 2. Graph after calling split twice

If we again assume that the SPLIT node will be evaluated and the guard
succeeds (because e < v), we obtain Fig. 3.

2.1 First Improvement

Note that each time that we evaluated a SPLIT node, a new node was created
for both the first and second element of the tuple. If the guard succeeds the

TUPLE
�
? ��

?
CONS
�
?

SEL 1 ��
?

SEL 2 ��
?
TUPLE !#

?

��
?

SEL 1 ��
?

CONS
�
?

SEL 2
�
?
TUPLE
�

? ��
?

CONS
�
?

SEL 1 ��
?

SEL 2 ��
?

SPLIT

Fig. 3. Graph after calling split 3 times

first element is new CONS node and the second element is a new SEL 2 node.
Otherwise, when the guard fails, the first element is a new SEL 1 node and the
second element a new CONS node.

Furthermore, we see that all the tuple nodes (except the first one) are always
referred to by a SEL 1 node and a SEL 2 node only. So for each element of
such a TUPLE node, there is exactly one corresponding selector node. This has
happened, because these TUPLE nodes were first created as SPLIT nodes, with a
selector node for each tuple element pointing to this node, and later these SPLIT
nodes were updated and became TUPLE nodes.

If a selector node is evaluated, it evaluates its argument (the tuple), then
selects the appropriate element of the tuple, evaluates this element, and updates
the root (selector) node with this result. Note that we can update all the selector
nodes of TUPLE nodes in Fig. 3, because the tuple is already evaluated, and the
element is either an (evaluated) CONS node, or another selector node.

Consequently, after evaluating a SPLIT node, we can always immediately
update all the selector nodes of this SPLIT node. A function that implements
this, will update the SEL 1 node with the first element of the tuple, and does
not have to create new node for this first element. The same optimisation can be
used for the other elements, the SEL 2 node is updated with the second element
of the tuple, and no new node has to be created for the second element of the
tuple.

We will call this function split2. This function has the same arguments as
split plus one extra argument for each selector node that has to be updated.

Sparud [7] also creates functions with extra arguments for selectors that
have to be updated, but he does not combine this update function with the
function that calculates the tuple, and therefore his transformation does not
make programs faster or allocate less memory. Nöcker [3] did combine those
functions, but he used annotations to make the elements of the tuple and the
recursive call of the function strict.

We will now show what happens to our example when we apply this first
optimisation. Initially we again start with the result of split (if e < v)). This
graph is shown in Fig. 4. Now the split function does not create a new split
thunk (as in Fig. 1), but a split2 node with two extra arguments, one for
each selector node. So the first time split is called, it is slower and uses more
memory, because a larger node has to be created.

TUPLE
�
? ��

?
CONS
�
?

SEL 1 ��
?

SEL 2 ��
?
SPLIT2

��6 ��6
Fig. 4. Graph after calling split

Now assume that the SPLIT2 node is evaluated (and not (e < v)), because
one of the selector nodes of this node is evaluated. No new node has to be created
for the first element of the tuple (the SEL 1 node of the new SPLIT2 node),
because we can update the SEL 1 node of the old SPLIT2 node (this node has
now become a TUPLE node) with this SEL 1 node. Similarly, no new node has to
be created for the second element (the CONS node), because we can update the
SEL 2 node of the old SPLIT2 node. So after evaluating split2 we obtain the
graph in Fig. 5.

If we compare the situation before this optimisation (see Fig. 2), we see that
we now have to create two new nodes (of which one is larger), instead of four
new nodes, because we no longer have to allocate new nodes for the elements of
the tuple.

Now again assume that the SPLIT2 node is evaluated (and e < v). Again no
new node has to be created for the first element of the tuple (the CONS node),
because we can update the SEL 1 node of the old SPLIT2 (now TUPLE) node.
Similarly, no new node has to be created for the second element (the SEL 2

TUPLE
�
? ��

?
CONS
�
?

SEL 1

��
?

CONS �'
?

TUPLE

��6 ��6
SEL 2
�

?
SPLIT2

�&
6

��6
Fig. 5. Graph after calling split and split2

node), because we can update the SEL 2 node of the old SPLIT2 (now TUPLE)
node. So we obtain the graph in Fig. 6.

If we compare the situation after three iterations of split before (Fig. 3) and
after the optimisation (Fig. 6), we see that we have created four nodes consisting
of three words less, but have twice allocated two words that are not use anymore
(the dashed boxes) and one node is larger, a SPLIT2 node instead of a SPLIT
node.

2.2 Second Improvement

When we look at Fig. 5 and Fig. 6 we see that the TUPLE nodes (except the
first one) are not used anymore. These nodes were first created as SPLIT2 nodes
which were only used by the selector nodes, but these selector nodes have been
updated, and therefore these references have disappeared. Consequently, the
SPLIT2 does not have to be updated with a TUPLE node, and becomes garbage
after evaluating split2. But when evaluating split2 we also have to create a
new SPLIT2 node for the next iteration of the recursion.

Therefore, we can make the following improvement. Instead of creating a
new SPLIT2 node, we update the old (root) SPLIT2 node, that would otherwise
become garbage, with the new SPLIT2 node.

We now examine what happens to our example reduction of split after
applying this optimisation. We start with the same graph (Fig. 4) as after the
previous optimisation.

If the SPLIT2 node is evaluated (and not (e < v)), we can updated the SEL1
and SEL2 nodes with the first (SEL 1 node) and second (CONS node) element of
the tuple, in the same way as after the first optimisation. But now we can also
update the SPLIT2 node with the new SPLIT2 node, instead of creating a new
SPLIT2 node and updating the SPLIT2 with a TUPLE node (as in Fig. 5). So we
have to create only one new node, the SEL 2 node (Fig. 7).

TUPLE
�
? ��

?
CONS
�
?

CONS

%'
?

CONS �'
?

TUPLE

��6 ��6
SEL 2

%'
?

TUPLE

$&
6

��6
SEL 1 ��

?
SPLIT2

��6
$&

6

Fig. 6. Graph after calling split and split2 twice

TUPLE
�
? ��

?
CONS
�
?

SEL 1 ��
?

CONS �'
?

SPLIT2

��6
�
?

SEL 2

��6
Fig. 7. Graph after calling split and split2

If we compare the situation without optimisations (Fig. 2) with the new
graph (Fig. 7), we see that we have allocated only one new node, instead of four
new nodes, during the last evaluation of split/split2. In total we now have 6
nodes instead of 9, and only one node is larger.

If we evaluate the SPLIT node again (and e < v), we can again update the
selector nodes with the first and second elements of the tuple. And again, we can
also update the SPLIT2 node with the new SPLIT2 node, instead of allocating a
new one. So again we have to create only one new node, the SEL 1 node (Fig.
8).

TUPLE
�
? ��

?
CONS
�
?

CONS �'

?

CONS �'
?

SPLIT2 �'
?

�
?

SEL 2

��6
SEL 1

��6

Fig. 8. Graph after calling split and split2 twice

If we again compare the situation without optimisations (Fig. 3) with the new
graph (Fig. 8), we see that during each evaluation of split/split2 we allocate
only one new node instead of 4. And in total we now have 7 nodes instead of 13,
and only one node is larger.

Also we no longer create selector nodes of TUPLE nodes, because these are
updated, and so we have also fixed the space leak.

2.3 Final Optimised Function

The split2 function now updates several nodes. Instead of updating all the
words of these nodes, we can omit some of these updates, because in some cases
the old node already contains the right value.

When a selector node is updated with a new selector node, both the first
word that contains the descriptor (e.g. SEL 1) and the first argument already
contain the right value, and therefore do not have to be updated. For example,
if the guard of split2 succeeds, the second element of the tuple is a SEL 2 node
with the SPLIT2 node as argument, but the node that is updated is already a
SEL 2 node with the SPLIT2 node as argument, so nothing has to be done to

create this new node. Otherwise, if the guard of split2 fails, the first element of
the tuple is a SEL 1 node with the SPLIT2 node as argument, but again the node
that is updated is already a SEL 1 node with the SPLIT2 node as argument, so
nothing has to be done to create this new node.

Furthermore, the first word of the SPLIT2 node always already contains a
split2 descriptor. And the arguments of such a node that contain the pointers
to the selector nodes of the node, often do not have to be updated as well. For ex-
ample, if the guard of split2 succeeds, the third argument already contains the
right pointer to the SEL 1 node, and when the guard fails, the fourth argument
already contains the right pointer to the SEL 2 node.

It is also possible that the other arguments of SPLIT2 already contain the
right values, but our compiler currently does not optimise this case.

Finally, we have to use different selector functions for selecting tuple elements
from functions that update the selector like split2. Normally the code for a
selector evaluates the first argument of the selector node, then selects the tuple
element from the tuple, evaluates this element and updates the selector node
with the result. But the selector code of optimised functions like split2, also
starts with evaluating the first argument, but now this evaluation will cause this
selector node to be overwritten with an element of the tuple. So we continue
by checking if the selector node is already evaluated, if not we jump to the
evaluation code of this thunk, otherwise we return to the caller of the selector
code.

Note that this code does not depend on the element of the tuple that is to be
selected, so when can use this same code for all selectors. And thus all selector
nodes (SEL 1 and SEL 2) of SPLIT2 can be the same. In the code below we call
these nodes select nodes.

So, after applying all the optimisations we obtain the following optimised
version of split (in Clean like pseudo-code with explicit UPDATE_ARGUMENTs and
UPDATE_NODEs):

split v [e:l]

| e < v

= let t = split2 v l small large

small = select t

large = select t

in ([e:small],large)

| otherwise

= let t = split2 v l small large

small = select t

large = select t

in (small,[e:large])

split v [] = ([],[])

r=:split2 v [e:l] sel1 sel2

| e < v

= let small = select r

in UPDATE_NODE sel1 [e:small]

UPDATE_ARGUMENTS r (ARG1 = v) (ARG2 = l) (ARG3 = small)

| otherwise

= let large = select r

in UPDATE_NODE sel2 [e:large]

UPDATE_ARGUMENTS r (ARG1 = v) (ARG2 = l) (ARG4 = large)

r=:split2 v [] sel1 sel2

= UPDATE_NODE sel1 []

UPDATE_NODE sel2 []

The recursive call of split, that was defined using a where clause in the
original split function, is moved to both guarded alternatives (and renamed
to split2) by the compiler in both functions. This enables the compiler to
generated better code for split2.

2.4 Updating with Black Holes

There is still one problem to be solved that we have not yet mentioned. When
the evaluation of a thunk begins, the descriptor of the thunk is immediately
overwritten with a black hole descriptor. This is necessary to be able to detect
cycles in the spine of the reduction (i.e. a function tries to use its own result to
compute the result). If such an error occurs, a black hole node will be evaluated
and an error message is printed. Furthermore, this update prevents a space leak,
because it removes the references to the arguments of the function from this
node.

While explaining our optimisation we have assumed that a thunk is not
changed when it is evaluated, so that it can be reused to build new nodes.
Black holing would cause some problems, so our current implementation does
not update the select nodes and recursive function thunks introduced by the
optimisation with black hole nodes.

To prevent the problems mentioned above, we intend to change the compiler
so that it updates the descriptor of the function thunks with a special black
hole descriptor when the evaluation of the thunk begins. This special black hole
will also cause an error message to be printed when it is evaluated. To prevent
the space leak, the garbage collector will treat the arguments that contain the
pointers to the selector nodes as normal pointers, but it will treat the other
arguments as non-pointers (e.g. integers).

In our implementation thunks may contain both pointers and non-pointers
(e.g. unboxed integers). Pointers are stored at the beginning of thunks, non
pointers at the end. So, if we would store the normal arguments of the function
thunks at the end and the arguments that contain the pointers to the selector
nodes at the beginning of the thunk, the garbage collector will do the right thing
if it thinks that the black hole node is a thunk with number of selector nodes
pointers, and number of normal function arguments non-pointers.

We do not have to update the select nodes with a black hole node. These
nodes only contain a pointer to the function thunk, which will immediately be
updated with a special black hole node, so black holing this select node is not

necessary to prevent a space leak. It is also not required in order to detect cycle
in spine errors, because if the select node is on a cycle, so will the function thunk
that it selects the element from, and we can already detect cycle in spine errors
for these function thunks. We will just detect the error a little bit later.

So to implement this, we just have to generate a few extra instructions, to
update the descriptor of the thunk of the recursive function (that is generated
by the optimisation) when its evaluation starts with a special black hole node,
and to restore the original descriptor when the thunk is updated for the next
iteration of the recursion. This will make programs only slightly slower.

2.5 Detecting Functions that can be Optimised

We can apply this optimisation for a function f if:

1. f contains a recursive call of f in a lazy context, and
2. The result of this call of f is a tuple t, and
3. All references to tuple t are by selectors in f, and
4. For all elements of the tuple t there is at least one selector, and
5. For each alternative of f:

(a) The result is a tuple denotation, or
(b) The result is a call of f.

We implemented this in the compiler as follows. For each recursive call to the
current function f in a lazy context, we use a counter that is initialised with zero
and incremented when we encounter a selector in a lazy context of this call of f.
If such a counter becomes equal to the total number of references to the call of
f, we examine whether all the possible results of f are tuple denotations or calls
of f. If this is the case we have found a call and function that can be optimised,
therefore the function f and the variable, to which the result of the call of f
is assigned, are marked. This information is then used during code generation.
Whether a new selector node needs to be allocated for the next recursive call
or not, is determined just before code generation by examining the results of
f that are tuple denotations. If an element of such a tuple is a selection of a
call of f that is optimised, and it selects the right element, no new selector
node has to be allocated, otherwise it is necessary to create a new node. This
information is stored in a bit vector with one bit for each element of the tuple,
and used to determine how to generate code for the optimised recursive calls
and its selections, and for the elements of tuples yielded by f.

This optimisation can be used in more situations, for example when a record
or a single constructor algebraic data type is used instead of a tuple, and for
mutually recursive functions with the same number of arguments. The calls from
other functions to an optimised function can in some cases be optimised, by
directly calling the optimised version of the function instead. Then sometimes
the non-optimised version of the function does not even have to be generated.

2.6 Advantages and Disadvantages

The advantages of this optimisation are:

1. Faster execution, because:
(a) Fewer instructions are executed (except for the first call of the function).
(b) The code for many selectors is never executed, because these selector

nodes are updated before the code for this selector is executed.
(c) If a tuple element of the result of the function is returned in the tuple

yielded by the recursive call at the same position in the tuple, no code
has to be generated for this selector (except for the first call).

(d) Fewer cache misses, because less memory is allocated for all calls of f
after the first one, usually (1 + number of function arguments) + 3 *
tuple size words less.

(e) Lower garbage collection costs, because less memory is allocated.
2. No space leak because all selector nodes are updated.

The disadvantages of this optimisation are:

1. More code is generated, because two versions are generated of each optimised
function.

2. Higher memory use because the thunk for the recursive function call is larger,
because it also contains pointers to the selector nodes. The number of extra
words is the number of elements of the tuple.

3. Allocates more memory if the recursive function is not called recursively, but
is called just once from another function, because of the larger thunk for the
recursive call (that is not evaluated).

3 Measurements

We have implemented the optimisation by extending our compiler for the lazy
functional language Clean version 1.3 [6, 1]. In this section we measure the ef-
ficiency of this new optimisation by comparing the execution speed with and
without this optimisation of some programs that use functions that can be op-
timised. We used two different computers, a PowerPC G3 with a 266 MHz PPC
750 processor and a PC with a 350 MHz AMD K6-2 processor. The two smallest
programs were also ported to Haskell and run on the PC using the Glasgow
Haskell compiler, to show that our compiler generates state of the art code for
these programs even without this new optimisation.

3.1 Quicksort

The quicksort program we used creates a list of 10000 random integers, sorts
this list using quicksort and computes the sum. This is repeated 50 times. We
measured quicksort using the split function and quicksort using two separate

filter functions using list comprehensions. The source code of both these functions
can be found in Sect. 1.

Table 1 contains the results, the following versions were run: ”Split” is a
quicksort using the split function without the new tuple optimisation, ”Split
optimised” is the same program with this optimisation, ”Split *” is the same
program, except that it sorts a unique list and uses an optimisation that uses
this uniqueness type information, but without the new tuple optimisation, ”Split
* optimised” again sorts a unique list and uses both optimisations, finally ”Com-
prehensions” is the quicksort that uses two list comprehensions instead of a
split function.

Column 3 lists the execution time not including garbage collection (GC)
time in seconds, column 4 the time in seconds spend collecting garbage, column
5 the total execution time in seconds, and column 6 the speedup of the tuple
optimisation, calculated by dividing the time for ”Split” by the time for ”Split
optimised” and the same for ”Split *” and ”Split * optimised”.

All the Clean programs were run using 2 megabytes of heap and a next heap
size factor of 20, except the fast Fourier programs, these were run with a heap
of 6 megabytes.

Table 1. Quicksort in Clean

Processor Time w/o GC(s) GC time(s) Time(s) Speedup

Split 266 MHz PPC 750 5.73 2.30 8.05
350 MHz K6-2 5.86 2.77 8.64

Split optimised 266 MHz PPC 750 3.16 0.36 3.53 2.28
350 MHz K6-2 3.11 0.50 3.61 2.39

Split * 266 MHz PPC 750 5.36 1.76 7.13
350 MHz K6-2 5.40 2.43 7.83

Split * optimised 266 MHz PPC 750 2.55 0.05 2.60 2.74
350 MHz K6-2 2.57 0.27 2.85 2.75

Comprehensions 266 MHz PPC 750 3.31 1.21 4.53
350 MHz K6-2 3.18 1.60 4.79

Table 2 lists the execution times for the same program in Haskell compiled
with the ghc compiler with -O2.

Table 2. Quicksort in Haskell on a PC with a 350MHz AMD K6-2

Compiler OS Time w/o GC(s) GC time(s) Time(s)

Split Ghc4.03 -O2 Windows 98 23.29

Split Ghc4.04 -O2 Linux 9.93 4.39 14.33

Comprehensions Ghc4.03 -O2 Windows 98 20.21

Comprehensions Ghc4.04 -O2 Linux 12.46 4.03 16.49

3.2 Takedrop

The takedrop program creates a list of the integers from 1 to 2000, and then
repeats the following 2000 times: use the takedrop function to split the list in
the first 2000 elements and the rest of the list, and then concatenate these two
lists again using an append function.

The takedrop function (often also called splitAt) can be optimised by our
transformation.

takedrop :: Int *[.a] -> ([.a],[.a])

takedrop 0 xs = ([],xs)

takedrop _ [] = ([],[])

takedrop n [x:xs]

#! n1=n-1

(xs‘,xs‘‘) = takedrop n1 xs

= ([x:xs‘],xs‘‘)

(# in Clean has the same semantics as let .. in, but the defined values have a
different scope)

The results are in Table 3, just like for quicksort with split, we measured
versions without tuple and uniqueness optimisations, with tuple optimisation
only (”Optimised”), with uniqueness optimisation only using a unique list (”*”),
and with both optimisations (”* optimised”).

Table 3. Takedrop in Clean

Processor Time w/o GC(s) GC time(s) Time(s) Speedup

266 MHz PPC 750 4.98 3.11 8.10
350 MHz K6-2 7.49 3.06 10.55

Optimised 266 MHz PPC 750 4.11 0.40 4.51 1.80
350 MHz K6-2 6.69 0.50 7.19 1.47

* 266 MHz PPC 750 5.53 2.26 7.81
350 MHz K6-2 8.83 2.34 11.18

* optimised 266 MHz PPC 750 2.81 0.11 2.95 2.65
350 MHz K6-2 4.68 0.10 4.79 2.33

Table 4 lists the execution times for this program in Haskell.

Table 4. Takedrop in Haskell on a PC with a 350MHz AMD K6-2

Compiler OS Time w/o GC(s) GC time(s) Time(s)

Ghc 4.03 -O2 Windows 98 29.38

Ghc 4.04 -O2 Linux 10.64 8.12 18.76

3.3 LZW compression

The LZW program compresses a 77k text file 10 times uses LZW compression.
This program is similar to the Haskell program in [5]. There are two func-
tions in this program that can be optimised with the tuple optimisation, the
code_string_ function that computes the next code, and the file_to_list
function that makes a list of the characters in the file. No strictness annotations
were used in this program.

code_string_ (Pt k v t l r) next_code c input2 input old_code

| c<k

(input_l,nl,l‘) = code_string_ l next_code c input2 input old_code

= (input_l,nl,Pt k v t l‘ r)

| c>k

(input_r,nr,r‘) = code_string_ r next_code c input2 input old_code

= (input_r,nr,Pt k v t l r‘)

| c==k

(input‘,n,t‘) = code_string input2 t next_code v

= (input‘,n,Pt k v t‘ l r)

code_string_ PtNil next_code c input2 input old_code

| next_code>=max_entries

= (input, old_code, PtNil)

| otherwise

= (input, old_code, Pt c next_code PtNil PtNil PtNil)

file_to_list :: *File -> ([Char],*File);

file_to_list input_file

(s,c,input_file) = freadc input_file

| s # (l,input_file) = file_to_list input_file

= ([c : l],input_file)

| otherwise = ([],input_file)

The results are in Table 5. The versions using uniqueness optimisation use a
unique tree with PT and PtNil constructors.

Table 5. LZW compression in Clean

Processor Time w/o GC(s) GC time(s) Time(s) Speedup

266 MHz PPC 750 6.06 2.30 8.38
350 MHz K6-2 5.95 2.76 8.71

Optimised 266 MHz PPC 750 3.96 1.03 5.01 1.67
350 MHz K6-2 3.88 1.16 5.04 1.73

* 266 MHz PPC 750 5.43 2.03 7.48
350 MHz K6-2 5.56 2.28 7.84

* optimised 266 MHz PPC 750 3.95 0.90 4.86 1.54
350 MHz K6-2 3.70 1.09 4.79 1.64

3.4 Fast Fourier Transform

The Fast Fourier Program does 10 FFT’s of a list with 16384 complex numbers.
A record with two strict Real’s was used to store the complex numbers.

Two functions in this program can be optimised using our transformation,
the merge function that does most of the computations, and a split function
that splits the list in two lists with the elements at even and odd positions.

merge :: *[Complex] *[Complex] Int Int -> (.[Complex],.[Complex])

merge [] [] i length = ([],[])

merge [e:re] [o:ro] i length

= let! ui = e+prod ; umi= e-prod

in ([ui : urest],[umi : umrest]);

where

(urest,umrest) = merge re ro (inc i) length

prod = {re=cos z,im=sin z} * o

z = toReal i*pi_2 / toReal length

split :: *[Complex] -> (.[Complex],.[Complex])

split [a,b : rest]

(even, odd) = split rest

= ([a : even],[b : odd])

split [] = ([],[])

The results are in Table 6. The versions using uniqueness optimisation uses
unique lists.

Table 6. Fast Fourier Transform in Clean

Processor Time w/o GC(s) GC time(s) Time(s) Speedup

266 Mhz PPC 750 5.50 1.68 7.18
350 Mhz K6-2 5.05 1.96 7.02

Optimised 266 Mhz PPC 750 4.55 1.00 5.56 1.29
350 Mhz K6-2 4.02 1.15 5.18 1.36

* 266 Mhz PPC 750 5.01 1.16 6.20
350 Mhz K6-2 4.42 1.34 5.76

* optimised 266 Mhz PPC 750 4.13 0.50 4.63 1.34
350 Mhz K6-2 3.68 0.71 4.39 1.31

4 Conclusion

This new transformation can be applied for many recursive functions yielding
multiple results in a tuple in lazy functional languages. It can make programs
that frequently use such functions much faster, sometimes more than twice as
fast. Because it also reduces the amount of memory that is allocated in the heap,
the garbage collector has to be run far less often, and so garbage collection costs

are reduced considerably. For some of our test programs by more than a factor
of six. Furthermore, it also fixes the space leak that is caused when selector
functions are used to select the elements of tuples. But of course, only for the
selector functions used in the recursive functions that are optimised.

References

1. Groningen, J.H.G. van, Nöcker, E.G.J.M.H., Smetsers, J.E.W.: Efficient Heap
Management in the Concrete ABC Machine. Proceedings of the Third Interna-
tional Workshop on the Implementation of Functional Languages on Parallel Ar-
chitectures. Technical Report Series CSTR 91-07. University of Southampton. U.K.
1991.

2. Hughes, J.: The design and implementation of programming languages. PhD thesis.
Oxford University. July 1983. Programming Research Group, technical monograph
PRG-40.

3. Nöcker, E.G.J.M.H.: Efficient Parallel Functional Programming - Some Case Stud-
ies -. Proceedings of the Fifth International Workshop on Implementation of Func-
tional Languages. Nijmegen. The Netherlands. September 1993. Technical Report
93-21. 51-68.

4. Peyton Jones, S.L.: The implementation of Functional Programming Languages.
Prentice-Hall 1987.

5. Sanders, P., Runciman, C.: LZW Text Compression in Haskell. Glasgow Workshop
on Functional Programming 1992. Ayr. Scotland. 215-226.

6. Smetsers, J.E.W., Nöcker, E.G.J.M.H., Groningen, J.H.G. van, Plasmeijer, M.J.:
Generating Efficient Code for Lazy Functional Languages. FPCA’91. Cambridge.
MA. USA. Springer Verlag. LNCS 523. 1991. 592-617.

7. Sparud, J.: Fixing Some Space Leaks without a Garbage Collector. FPCA’93. June
1993. Copenhagen,Denmark. ACM press. 117-122.

8. Stoye, W.: The implementation of functional languages using custom hardware.
PhD thesis. Cambridge University. December 1985. Computing Laboratory, tech-
nical report 81.

9. Turner, D.: A proposal concerning the dragging problem. October 1985. Burroughs
ARC internal report.

10. Wadler, P.: Fixing some space leaks with a garbage collector. Software Practice
and Experience. 18(9):595-608. September 1987.

