The Implementation and Efficiency of Arrays in
Clean 1.1

John H. G. van Groningen

Computing Science Institute, University of Nijmegen
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
e-mail: johnvg@cs.kun.nl

Abstract

We presenta new approachto implementing arrays in a pure lazy
functional programming language. The arrays can be updated destruttively
using uniqueness typingndthe elementscan be unboxed.We describethe
implementation of these arraysin the functional programming language
Clean 1.1. The performanceof two sorting algorithms and a fast fourier
transformation written in Clean using arrays is compared with similar
programswritten in C. The currentimplementationof Clean is on average
about 25 percent slower than C for these programs.

1 Introduction

Until recently, most implementations of puezy functional programminglanguages
had limited or no supportfor arrays.The main reasonfor this lack was that an

implementation could not update arrays in place, but hadpg the arrayfirst before
an elementcould be changedThis copyingis necessarypecausdheremay be other

references to the array in the programg changingthe arraywill causea side effect,

which of course is not allowed in a pure language.

This updateproblem also made implementationof efficient input/output very
difficult. For example,writing to a file or to the screencanonly be donewithout a
side effect if there are no more references in the progrdhetold file (the file before
the write) or the old screen.

A way to solve such problemsis by using uniquenesstyping [BaSm93].
Uniqueness typing tries to determine at compile time which objects are wsngea
combinationof referencecounting, type checkingand programanalysis.An object
passed as an argument to a functiamigue if there isonly one referenceto it when
the function is applied. An array updatefunction on a unique array can now be
implemented efficiently. Whethe updatefunction is calledat runtime, thereis only
one reference to the array, which can therefore be updated in place.

The remainder of this paper is organised as folldwsection2 we describelazy,
strict and unboxed arrays in Clean. Section 3 combines these 3 kiadaysusing a
type constructorclass. Section4 discussesarraysof unique elements.In the next
sectionthe performanceof unboxedarraysis comparedwith arraysin C. We give a
few concluding remarks in section 6.

2 Lazy, Strict and Unboxed Arrays

The functional programminglanguageClean [PlaEe95] uses uniquenesstyping,
among other things, to implement destructivelyupdateablearrays. There are three
kinds of arraysin Clean:lazy, strict andunboxed.Lazy arraysare the most general
ones,but also the most inefficient ones. Strict arraysare more efficient becausethe
array elements are always evaluated (in root normal form). Unboxed ac@aysyless
memory and are even more efficiebhazy, strict and unboxedarraysare consideredo
be of different types. The overloading mechanism is used to handle areaygifiorm
manner. This is discussed is section 3.

2.1 Lazy Arrays

To manipulate(lazy) arrays the following functions have been predefinedin the
standard library of Clean 1.1:

createArray :: linte -> {e}
update :!{e}lint.e-> {e}
select :l{e}lint ->.e

uselect :lufe}!int -> (e, lufe})
size s 1{e} -> Int

usize :luf{e} > (lnt lu{e})

An arraywith elementsof type e is denotedas{e} . Specialsymbols appearin the
specificationof a Cleantype. For instance,! is a strictnessannotation.The other
strange symbols have to do with uniqueness typint. Abefore a typendicatesthat
the type is unique. A: before a type indicates that the type has a uniquextieisite
variableu. A type annotatedvith a uniquenesattribute variable canbe unified with
eithera uniqueor a non-uniquetype. Usually, such a uniquenessttribute variable
occursseveraltimesin a function type. In aninstanceof a function type all types
annotatedwvith the samevariableare eitherall instantiatedwith a uniquetype or all
with a non-unique type. For example, the twobefore the array type itihe uselect
function indicatethat if uselect is usedon a uniquearray,the arrayreturnedin the
tuple is also unique. Furthermore,if uselect is usedon a non-uniguearray, the
returned array will be non-unique as well.

Dots are used as an abbreviationto reducethe number of uniquenessattribute
variables.A dot beforea type variablev indicatesthat all type variablesv annotated
with a dothavethe sameanonymousauniquenessttribute variable.Prefixing a type,
that is not a type variable, with a dot indicatesthat the type has an anonymous
uniqueness attribute variable that does not occur anywhere elseumdtien type. A
more detailed explanation of uniqueness attribateebe found in the Cleanreference
manual [PlaEe95].

createArray n e returnsa one-dimensionalunique array of n elements,all
elements are initialised with The indices of the array are the integers foton-1 .

update a i e returnsanarraywhich is identicalto a, exceptthat the element
indexed byi of thearrayis updatedwith e. This function canonly be usedif a is a
unique array.

selectai returns elemerit of arraya.

uselect a i returnsatuple with thei th elementof the array a and the array
itself. This function is usually used to select elements fooiquearrays,becauseve
usually cannot use theelect functionto selectan elementfrom a uniquearray and
then later usehis arrayas a uniquearrayaswell. The compilerdoesnot acceptthis
becausen sucha casetherewould be morethan one referenceto the array. Because
uselect also returns a 'new' array, which is identical toatray beforethe selection,
we can select an element from a unique array and still use the (new) unique array.

sizea returns the number of elements of ariay

usize a returnsa tuple with the numberof elementsof array a and the array.
Like uselect , this function is usually used to obtain the size of a unique array.

Clean 1.1 also includes the following syntactic suganémipulatearrays.Instead
of update a i n, onemaywrite fa & [i]=n} . Severalupdatesat once are also
possible,for exampled{a & [i|=n,[j]=m} . Slect a i canalso be written as:
afi] .uselect 'scan be done in patterns, for example:

swap a=:(fil=ai,[l~aj} = {a&[i=aj[]=ai}
is equivalent to:

swap __a=let! s=uselect_aj
in {a &[i]=aj,[j]-ai}

where
(ai,_a)=uselect _ai
(aj.a) =s

Selections in patterns are evaluated immediately to prevent spacéskeassction
2.2).

Arrays are stored in the heap. In a lazy context [PlaEe95] an amgyrésentedy
a node consisting of 2 machine words (a word consists of 32 bits in current
implementations). The first word is aRRAYdescriptor,the secondword is a pointer
to anothernodein the heap.This othernodeconsistsof 3+n words,wheren is the
number of elements. The first word of these contaidsscriptorandthe secondword
the arraysize. The third word is 0 for lazy arrays.The remainingn words contain
pointers to the elements of the array (nodes in the heap).

In a strict contextthe 2 word array indirectionnodeis not used.In this casean
array is represented only by the node of size 3+n. The compiler will s array
indirection node if the array is later also used in a lazy context.

The advantage of this scheme is that we sawexta pointerindirection whenwe
want to load or store information in the arrdje disadvantagés that we sometimes
have to create new array indirection nodes.

In the best case the code generated by the Clean compiteCI&C processoifor
the update , select andsize functions consistsof only one machineinstruction.
This happens if the function is in a straintext,the compiler can determinethat all
argumentsare evaluated,and the valuesof the argumentsare already in registers.
However, the compiler has to generate 3 instructions on most RISCsatsediection
or update instead of just one.

2.2 Inefficiency of Lazy Arrays

Although the array functions (except createArray) described above can be
implementedin O(1), efficiency is still not as good as in (strict) imperative
programming languages like C. This has the following reasons:

* More memoryis requiredto storelazy arrays.For example,in an imperative
language like C an array of n integers carstoeedin n machinewords.In Clean
we need3+3*n machinewords. The elementsof the arrayhaveto be pointersto
nodesin the heap, becausean elementof an array can be unevaluated,and
unevaluatecexpressionsare storedin the heapas closures.So, evenif an array
contains evaluated integers, we still have to store tinethe heap.To be ableto
recognise that an element is an evaluated integer wetbawark it. Thereforewe
store a descriptor just before the value of the integer. This descriptor ibyuties
garbagecollector. So, for every evaluatecelementwe haveto store a pointer, a
descriptor and a value. This means we have to store 3 words per element.

e Accessto valuesin arrayelementss more expensive For example to selectan
integer, we first have to loadminter, then load the descriptor then examinethe
descriptorto find out if the integer has already been evaluated,and if it is
evaluated, load the value. If the integer has not yet bealnatedwe haveto call
the evaluation codandlater load the value. Only oneload instructionis required
to select an integer from an array in a language like C on a CISC processor.

We noticed that many programs using thiesty arraysuse much more memorythan

expectedEvenif all the extracostsof lazy arraysaretakeninto account.The most

important reasons for this high memory use are:

¢ Theupdate function doesot evaluatethe new array element.So, in most cases
theupdate function will storea closurein the array.In many programsan array
is updated many times before an elenwfnthe arrayis used.In suchcasesmany

elementsof the array becomeclosureswhich are usually largerin size than an
evaluated array element.

¢ A lazy array selectorcontainsa referenceto the whole array, not just to one
element. The compiler creates closures for array selectors in edaxt. Sucha
closure containsa pointer to the array and the index. The garbagecollector
generallycannotdeterminewhich elementis selectedrom the array, becausehe
index could still be unevaluatedSo, evenif thereis just one referenceto a
selection closure of an array, theemoryreferencedy the whole array cannotbe
deallocated. For example, if a function creates a new vbgtaddingtwo vectors,
the memoryusedby thesetwo vectorscannotbe deallocatedas long asthereare
referencesto the new vector and only one element of this new vector is
unevaluated.

2.3 Strict Arrays

To be able to write more efficient progran@eanl.1 also hasstrict arrays.A strict
array with elements of type is denotedwith {!{e} . The implementationstoresstrict
arrays in the same way as lazy arraygjthe samekind of functionscanbe usedfor
strict arraysas for lazy arrays. Different from the previous approachis that the
update , createArray ~ anduselect functions evaluatethe array elementto root
normal form. The types of the functions now become:

createArray :: lintle -> {le}
update :{Le}!intle-> {.e}
select :l{le}lint ->.e

uselect :lufle}lint ->(le, lufle}))
size s 1{le} ->|nt

usize :lufle} -> (lint, u:{l.e})

As a consequence, thelect function for strict arrayscanbe implementedmore
efficiently than for lazy arrays,becausdt doesnot have to evaluatethe element
selected from the array. Also strict arrays cargmttainclosures,so the memoryuse
problem caused by the laziness of the update function does not occur witrsdsist
This high memory useauseddy array selectorsn a lazy contextis still a problem,
but happendess often. For examplethe vector add function will no longer build
selectionclosures becausehe sum of the vectorelementsis computedbeforeit is
stored in the new vector.

Unfortunately, the amount of memoogcupiedby a strict arrayis still asbadas
for a lazy arraywith evaluatecelementsFor example,we still haveto representan
array of integersby an array of pointersto integernodesin the heap.However, the
problemis now only causedby the fact that the predefinedarray functions are of
polymorphic type. This meansthat the select function can be usedto selectan
element from anyype of arrayit is appliedto. Thereforearray elementshaveto be
represented in a uniform way as well.

This polymorphismalso hasits advantages-or example,one only hasto write
one function, likeswap, reverse orcopy , andone canuseit for all typesof arrays.
In animperativelanguagedike C a function that swapstwo integersin an arrays
cannot be used to swap two reals. A sviiapction that canbe usedfor all arrayscan
be implemented in Gf we passthe size of an elementof the arrayto the function,
and use it to calculate the addresses of the elements. But such a funsiteveisand
more difficult to use.

2.4 Unboxed Arrays

We now choosethe most efficient representatioffior everytype of array. So, an
array of n integersis storedin n+3 machinewords. The elementsof sucharraysare
unboxed and strict. Wdenotesuchan unboxedarraytype with {#e} , wheree is the
type of the elements.

The Clean compiler storesthe unboxedarraysin a strict contextas follows: (we
assume the sizes of integers and pointers are 4 bytes,iandennumberof elements
of the array)

e {#Char} :8+n bytes, a string descriptor, the size and the characters.

Thefirst 12 bytesof all otherunboxedarray nodesare a descriptor,the size, and a

descriptor that describes the elements, for example an integer descriptoffot} an.

e {#Int} , #Real} and {#Bool} : 12+es*n bytes, where es is the size of an
element: 4, 8 or 1 bytes.

e Arrays of records: 12+es*n bytes, where es is the sum dfizksof the elements
of the record.

« Arraysof arrays:12+4n bytes, for this arrayonly. ‘Unboxed'arraysof arraysare
represented as arrays of pointersutays,without the extra array indirection node
for the elements.

At most 3 align bytedollow a {#Char} or a {#Bool} to align the next nodein the

heap at a word aligned address (multiple of 4).

The problemscausedy the different representationfor different types of arrays
can be solved using Clean’s overloading mechanism.For every basic type, for
examplent , we define:

createArray_int :: lint !int -> {#int}
update_int :: P#viInt} Hnt lvint -> {#v:Int}
select_int = l{#viInt!int ->vint
uselect int :: lu{#Int} lint -> (lnt, 'u:f#Int})
size_int s L{#.Int} ->Int

usize_int :lu{#vint} -> (lint, lu:f#v:Int})

Of course,we don't want to write select_int when writing a programusing
integer arrays, so we define a class for every array function. For examgsefor :

class selecte :: ! {#.e}lint-> .e

and we define instances for all element types, for example:

instance select Int
where
selectai=select intal

instance select Real
where
selectai=select realai

Now we can still write select and the type checkerwill try to determinewhich
instanceof select should be used.If a programmerdefinesa function that uses
overloadedarray functions, the compiler will automatically generate specialised
versions of this function, ithe overloadingof the arrayfunctions cannotbe resolved
while typing the function. In this way the compiler a@movenearly all overloading
within a module.So the programwill usually be just as efficient as it would have
been without using overloading.

When such an overloaded functimnexported,by specifyingthe function type in
a definition module,and is called by a function in another module, the compiler
cannot generatespecialisedversions. If this happens,the function will be very
inefficient. To preventthis, the programmercan tell the compiler to generate
specialised versions by adding export statement in the definition module.

Using Cleansunboxedarraysas describedabovein combinationwith strictness
annotations, we expect for most prograim$e ableto generatecodewhich is about
as efficient as codegeneratedy imperativelanguagedike C. We will comparethe
efficiency of somesmall Cleanprogramswritten in this way with similar programs
written in C, this is done in section 5.1.

3 Combining Lazy, Strict and Unboxed Arrays

We have now definedthree kinds of arrays:lazy arrays, strict arrays and unboxed
arrays. So far we have used the same names for functions that marépaldtid of
array. We prefer to dthis in this way, insteadof having 3 different namesfor every
function. We canthenwrite a programusing for examplelazy arrays,andthen later
decideto changeit to unboxedarrayswithout havingto rewrite the whole program.
All we have to do is change a few types. If we use a type synonymay@venhave
to change only one type.

We canachievethis by using Cleanstype constructorclasseswhich are similar to
Gofers type constructor classes [Jone95].

We define a type constructor claggay with instancedazy, strict andunboxedarray
with:
instance Array {}, {1}, {#}

For this class instances are defined for the predefined array functions fattaztyand
unboxed arrays. The instances for unboxed arrays are:

class Array a

where
createArray :: lint le -> (ae) | createArray_u e
update :!*(a.e)!Int.e->.(a.e) | update_ue
select :l(a.e)lint >.e | select_ue
uselect :lu:(ae)!int ->(le, lui(ae))|uselect ue
size tl(ae) ->Int | size_ue
usize :lu(a.e) ->(lInt!u:(a.e))| usize_ue

The classesreateArray u , update_u , etc. arethe sameas the classesdefined for
unboxedarraysin section2.4. So for example,classselect u is the sameasclass
select in section 2.4.

So, the instance aklect for unboxed arrays has type:
select :: {# .e }Int-> .e | select ue

If the compilercannotresolvethe overloadingin the type of the element,but can
determine that its an unboxedarray,it will call this select with threeparameters:
the two normal parameters (the array and the indexpaetbct u function addedby
the overloading mechanism. Sal| the implementationof this function hasto do is
call theselect_u function with thearray andthe index, andthen returnthe result of
this function application.

The implementation of the instancestbé select function for lazy andstrict arrays
doesnot needthe select u function, becausethe implementationof theseselects
does not depend on the type of the elementairray. So the instancedor lazy and
strict arrays foselect are:

select:: { .e}!int->.e|select ue
selectai=select lazy arrayai

select:: {! .e}!int-> .e|select ue
select ai=select_strict_array ai

where select_lazy array is the select function for lazy arrays and
select_strict_array is theselect function for strict arrays.

We define the instances of the other predefined functions in the same way.

The instances dofreateArray andupdate arestrict in the argumentthat passeghe
element for striceind unboxedarrays,but not for lazy arrays.The samegoesfor the
element returned hyselect . The types defined in claggray for theseinstancesare
lazy in these arguments/results. To prevent loss of strictness inforrtagioompiler
recogniseghesefunctions, and addsthe strictnessinformation for strict and unboxed
arrays after typechecking.

We can now use the predefinedarray functions for all types of arrays, and the

typecheckerwill determinethe right instance. There are, however, also some

disadvantages:

¢ When the compiler cannot determine whether an arrkazys strict or unboxedor
what the type of the arrayelementis, andit cannotgenerateor usea specialised
version, these array functions will be very inefficient.

e If the compiler cannot determine whether an array usedfbgaion is lazy, strict
or unboxed, the overloaded function type looks rather complicated.

4 Arrays of Unique Elements

With the array functionsdefinedabovewe cannotcreatea uniquearray of which the
elements are unique as well. It is also not possible to seletjueelementfrom an
array with theuselect function. Selection can be done with tleéect function, but
this can be done only once: after the selection we no ldreyera uniquereferenceto
the array.

The createArray ~ function cannotcreatea unique array becauseit initialises all
elementswith the samevalue. If the array has more than 1 element,therewill be
more references to this initial value, therefore the elements cannot be unique.
So to createan arraywith uniqueelementswe haveto computea new value for
every array element. We can do this by using an array comprehension
[Wadl86,AnHu90] in Clean, which computes the value for every array element.
To compile such an array comprehension, the Cbeanpiler usesa function that
creates an array of undefinetementswhich may be unique,(_createArray). Since
the compiler knows that all array elements willuplatedmmediatelyafter the array
has been created, it does not have to initialise the array, darbtton is also faster.
The currentimplementationdoes however initialise pointers in arrays with Nil ,
because the garbage collector cannot deal with such uninitialised structures.

Selecting a unique elementfrom an array (without losing the array) is not
possible, because after the selection we would haweaeferencedo the element:the
element is returned hyselect and the returned array contains it as well.

The onlyway to makea selectionof a uniqueelementpossible,seemso be by
removingthe elementfrom the array. We cando this by replacingthe selectedarray
element by a new value with the function:

replace :: *(a .e) lInt .e -> (.e, *(a .e)) | Array a & replace_u e

which returnsa tuple with the selectedelementand an array in which the selected
element has been replaced by the third argumenpiate

With thereplace andupdate functions we can computenew unigueelementof an
array that uses the old unique value in the computatidghe following way. We use
replace to select the element, then we compute the new value, afitdipadkin the
arraywith update . This is of courseslowerthan a modification using select and
update , but an evenmore seriousproblemis that we temporarily needto createa
unigue element, which is inefficient or almost impossible for some types.

In a future version othe compilerwe hopeto makeit easierto modify uniquearray
elements in this way, may be by adding a function or special syntax.

4.1 Multidimensional Arrays

So far we haveonly looked at one-dimensionahrrays. Multidimensional arrays are
implemented in Clean as arrays of arrays.

Using arrays of arrays has certain advantagesover implementing multi-
dimensionalarraysas a separatearray type implementedby mappingtwo or more
indicesto one index in a one-dimensionahrray. For example,an array of strings
(f#Char}) can be usedas a one-dimensionahrray, but also as a two-dimensional
array. Arow of a matrix canbe usedas a vectorwithout havingto copyit, andthe
row may even be unevaluated. Without loop optimisations, updatietparentof an
array of arrayscan usually be done faster than updatingan elementof a flat two-
dimensional array, because the multiplication teatquiredfor the index calculation
is usually more expensivethan loading the addressof the row. There are also
disadvantages: arrays of arrayscupymore memory. Multidimensionalarrayscan be
accessed faster when certain loop optimisations are performed.

To be ableto updatesuchan array of arrays,all one-dimensionahrrayshaveto be
unique. For instance, to be able to update a lazy two-dimensionabdrireggers,we
have to use an array of typ&{Int}}

To select an elemeffitom suchan array, we would startby using uselect ~ with the
first index, which yields an array of type *{int}} and an array elementof type
{Int} . The elementsof the returnedarray (of type *{int}) are no longer unique,

sincethe selectionaddeda referenceo an array element.Thereforewe canno longer
update this array after this selection.

To updatea multidimensionalarray,we would start with a uselect with the first
index. The elements of the returned array are no longer unique. The reglemeohtis
also not unique, so we cannot update it.

It is not possible to select or update a multidimensional array more thamvihcthe

select ,uselect andupdate functions. So we have favent a trick. Insteadof just

selectingan element,we selectthe elementand also temporarilyreplacethe selected
element in the array by a dummging the replace function. To selectfrom a two-

dimensional array of typg*{e}} we need tareatea temporaryarray, usereplace

uselect and then usepdate . To updatean elementfrom an array of type *{*{e}}

we need to create a temporary array,reglace , and then usepdate twice.

Clearly we don't want to write selections from amptlatesof multidimensionalarrays
in this complicated and inefficient way. We decided to extend the languitlgeyntax
for multidimensional selections and updates. €bmpilertransformstheseselections
and updates to several one-dimensional selections and updates.

The compiler uses the following functiotws efficiently implementmultidimensional
selections: (they cannot be used by the programmer)

_uselect :: lu:(a .€) lint-> (.e,!u:(a .€)) |JArray a & _uselect_u e
_uselectn:: I(1.(a .€),!.m) Lint ->(.e,..m) |Array a & _uselectn_u e
_uselectl:: I(l.(ae),!.m) LInt-> (e,!.m) |Array a & _uselectl_u e
_update :: !(*(a .e),!m) lint.e ->*m |Array a & _update_ue

The_uselect function is similar to theselect function, but returnsa uniquearray
element. Of course thislementis not unique,but the compiler usesthe function in
such a way that this doesn't cause any problems.

The_uselectl function has two arguments. The first one is a twgth an array
and a value, this value is returned in a tupletiy function. The secondargumentis
an index. The result of the functiontise array elementselectedby the index andthe
value passed to the function as the second element of the tuple.

The _uselectn function is similar to the _uselectt function, but returns a
unique array element. As fouselect , this elementis not unique,but the compiler
uses the function in such a way that this doesn't cause any problems.

The first argument of theupdate function is a tupleconsistingof an arrayanda
value that is returned by the function. The second argumentiiglex into the array.
The last argument is the new array element. The funcioiateshe elementselected
by the index with the new array element and returns the second element of the tuple.

A two dimensionalselectiona.[i,j] in a patternis transformedby the compiler
into:
_uselectl (_uselectai)

A two dimensional updat@ & [i,j]=n} is transformed into:
_update (_uselectai)jn

afij,K] is transformed into:
_uselectl (_uselectn (_uselectai) j) k

{a &[i,j,k]=n} is transformed into:
_update (_uselectn (_uselectai)j)kn

If there are more than 3 dimensions, for every extra dimensiogeectn is added.

We canonly computethe size of the first dimensionof a multidimensionalunique
arraywith usize . So we also haveto implementsucha transformatiorto compute
the size of the other dimensions.

The argumentm passedo andreturnedby the _uselectn , _uselectt and _update
functions is always an array. This array would normally be passed and returned with
extra array indirection node. The compiler recognises thessionsand preventsthis
inefficiency.

5 Performance

5.1 Performance Results

To comparethe performanceof arraysin Cleanl1.1 with C we wrote variantsof the
well-known quicksort,heapsortandfast fourier algorithmsin Clean 1.1 and C. We
usedunboxedarraysin Cleanandaddedstrictnessannotationsto types of functions
when necessaryo makethe functionsstrict in all argumentsand tuple results. We
then rewrote the programs in C usitig samedatastructures.Tail recursivecallsin
C were manually optimised tohile loops, becausg¢he C compilersdid not perform
this optimisation.

We used a PowerMacintosh 7100/80 with a 80 MHz PowerPC 601 cpib 3#
memory and 256 Kb secondarycacherunning system7.5.3 without using virtual
memory. We usedthe most recentversionof the Clean1.1 compiler. The compiler
option to check whether array indices are in-range was turned off.

We comparedhe performancewith two C compilers:MetrowerksCodeWarriorC 9,
compiler version v1.5, and Apple's MrC version 1.0f4el. We used maximum
optimisation for both compilers. Global optimisation level 4, optimise for speed,

peepholeoptimisation,instruction schedulingfor 601, use FMADD & FMSUB for

CodeWarrior and -opt speed for MrC.

quicksort andheapsort repeatedhe following 10 times: createa list of 200,000
integers,sort the list andcheckif the list was correctly sorted. The sourcecode of

thesesorting programscanbe found in the appendix.The fft andfftc programs
createan array of 65536 complex numbersand then do a fast fourier transform
followed by a reverse fast fourier transform on its result.

These are the results:

Clean CwC MrC Clean/CwC Clean/MrC
quicksort 6.45 5.63 7.62 1.15 0.85
heapsort 12.13 8.55 7.60 1.42 1.60
ft 5.51 4.67 4.47 1.18 1.23
fitc 2.38 2.20 1.60 1.08 1.49

Thefirst 3 columnscontain executiontimes of PowerPCcode,in secondsof the
Cleanprogram,the C programcompiled with CodewarriorC, andthe C program
compiledwith Mr C. The last two columns are the executiontime of the Clean
program divided by the execution time of the C program for each C compiler.

There are two versions for the fast fourier progréim (and fftc). We first wrote fft

It was much slowerthanwe expectedThis was causecby a larger numberof cache
misses. We rewrote the program to use a recursive fft in the beginnirdiviied the
array in two parts for every pass, did the oth@ssef the fft for the first part, then
for the second part and then mergedtiie parts. Whenthe partswere small enough
to fit in the primary cache we usedthe samealgorithm as before. This reducedthe
number of cache misses and it was more than twice as fast.

5.2 Possible Improvements

On the PowerPCdoubleprecisionfloating point valueshaveto be storedat double
word aligned (multiple of 8) addressefor maximum performance.A misaligned
floating point load from the cache usually takes 2 clopblesinsteadof 1 to execute
on a PowerPC 601, and a misaligrilating point storein the cacheusually spends
5 clocks in the execution stage instead of 1. The current implementation ofdoé=an
not storefloating point valuesat double word aligned addresseshut only at word
alignedaddressesto determinethe costof this inefficiency we changedhe fit and
fitt C programs to place the arrays at non double word aligned addresses.
These programsftuinalignc andfftcunalignc) were about 20 percent slower:

Clean Cw MrC Clean/CW Clean/Mrc
ft 5.51 4.67 4.47 1.18 1.23
fftunalignc 5.51 5.78 5.47 0.95 1.01
fitc 2.38 2.20 1.60 1.08 1.49

fftcunalignc 2.38 2.65 1.92 0.90 1.24

The fit andfftc C programsstore the arrays always at double word aligned
addresses. Thealloc function of oneof the C compilersdid not return doubleword
aligned addresses.

So for bettemperformanceve would haveto changethe Cleanruntime systemto
allocatedoublesat doubleword alignedaddressesAllocating arraysof reals at these
addressesan be doneeasily. Changingthe sliding compactinggarbagecollector to
move these arrays to double word aligned addresses is more difficult.

Aligning doubleson the stackis also more difficult. We probablyhaveto align
all stackframesat doubleword addressesyhich would resultin higheruseof stack
spaceevenfor programsthat do not use reals. Another option is to use a separate
stackfor reals.For the fit programsaligning reals on the stackis not important,
because few reals are stored on the stack.

The code generated for loops canimerovedeasily. The test for the end of the loop
is usually done in a pattern or guard. In such a case the current compiler gesoeiates
which looks like this:
function_entry: cmp index,size
beq guard_false
guard_true: do something
bra function_entry
guard_false:

We can reduce the number of branches in the loop by changing this to:
guard_true: do something

function_entry: cmp index,size
bne guard_true
guard_false:

Applying this transformation to quicksort would reduce the nunolbdaranchesn the
most important loops from 3 to 2. A similar transformationwould remove an
incorrectly predicted branch from the most important loop of heapsadnilersdo
a similar transformation to reduce the number of branches in loops.

Another optimisation that C compilers perform, and hasyet beenimplementedn
the Clean compiler, is common subexpression elimination of ardax calculations.
The Clean compiler generate® machineinstructionson a RISC to calculate the
addresof an elementin an array of integersor reals:a shift instructionand an add
instruction. In theyuicksort ~ andfft programsthe sameindexis usedtwice in the
samebasicblock: whentwo elementsare swappedand in the function merge. The
addressesan be calculatedonce, and then usedby more load or store instructions,
saving 2 instructions per additional load or store.

We could also try to eliminate the add instruction in the addresscalculation. The
compiler has to generate it because the first elewfeah arrayis not storedat offset
0 from the address of the array, but at offset 12 ¢ir 8 arrayis usedseveraltimes,
we could calculate the address of the elenoace,and usethe addressas the basefor
the indexedload or storeinstruction. This savesoneinstruction for every additional
load or store of the same array.

We could removethis extraoffset calculationin all casesjf we changethe way we
store nodes itthe heap.In the currentimplementationwe cannotpassthe addresf
the first elementof an array insteadof a pointerto the node,becausehe descriptor
hasto be at offset 0 from the addressThis is necessarybecauseof the garbage
collector and the way closures are evaluated.

In the current implementation tleeldresof a nodeis the addresf the descriptorof
the node. If instead we would store the address of the word following the deseveptor,
could remove the extra offset calculation for arrays vmitvould haveto changethis
for all nodes. We would have to change toenpiler, the garbagecollectorsand other
parts of the runtime system. Code that doassgtarrayswould probablystill be just
as efficient on a RISC after this modification.

The code generatddr the fast fourier transformby the Cleancompiler can probably
be improvedwith a simple instructionschedulerlnstruction schedulingis not very
important for theyuicksort ~ andheapsort programs.

5.3 Related Work

In Haskell, lazy arrays can be created using comprehensions, but irapkacepdates
arenot possible.Severalanalysesandtransformationsare requiredto compile these
comprehensionsfficiently [AnHu90]. Currently none of the available Haskell
compilers are able to do this.

The Glasgow Haskell compiler (GHC) has been extended with an array
implementationbasedon monads[PeWa92]. Unboxed arrays (called Bytearrays) of
basic types can be manipulated. For eaasictype, functionsare availableto create,
read or write an array. For example writelntArray and writeDoubleArray are
available, buthereis no writtArray function that canbe usedfor every Bytearray.
[Serr96] compareghe performanceof both GHC’s Bytearraysand monolothic arrays
with Clean’s unboxedarraysfor a conjugategradient algorithm, and Clean was
always at least ten times as fast.

Using analyses,program transformationsand reference counting strict pure
functional languages like SISAL [FiOI95,Fe092] aBAC [MuKISc96] achievegood
performance for scientific applications using arrays.

The Cleancompiler[SNGP91]insertsthe necessancoercionsto box or unbox
basic types, tuples and records as describedin [N6SmM93]. Leroy [Lero92] also

discussegutomaticcoercionof thesedatatypes. However,the transformationLeroy
describeannotunbox arrays. Unboxed (polymorphic) arrays are also not possible
with unboxedtypesas describedn [PeLa91].This type systemhas as disadvantage
that coercions have to be inserted by the programmer.

6 Conclusion

The efficiency of unboxedarraysin Clean 1.1 is good, andit can still be further
improved with simple optimisations. Multidimensional arraysand array of unique
elements are more difficult to use than one dimensiamals.Strictnessannotations,
andsometimessmall changego the program,arestill necessaryo obtainthe most
efficient version of a Clean program.

References

[AnHU90] Andersen,S. and P. Hudak. 1990. Compilation of Haskell Array
Comprehensionsfor Scientific Computing. In Proc. of the ACM
SIGPLAN’90 Conf. on Programming Language Desagm Implementation,
New York, pp. 137-149.

[BaSm93]Barendserk., and J.E.W. Smetsers.1993. Conventionaland Uniqueness
Typing in Graph Rewrite Systems. In proceedings 13th conference
Foundations of Software Technology and Theoretical Computer Science,
Bombay, India, December 1993, pp. 41-51, LNCS 761.

[Feo92] Feo, J. A ComparativeStudy of Parallel ProgrammingLanguages:The
Salishan Problems. 1992. North Holland, ISBN 0-444-88135-2.
[FiOI95] Fitzgerald,S.M. and R.R. Oldehoeft.1995. Update-in-placeAnalysis for
True Multidimensional Arrays. High Performance Functional Computing,

pp. 105-118.

[Jone95] Jones, M.P. 1995. A system of construckassespverloadingandimplicit
higher-orderpolymorphism.In Journal of Functional Programming 5(1) -
January 1995, Cambridge University Press, pp. 1-35.

[N6Sm93] Nécker, E.G.J.M.H., and J.E.W. Smetsers.1993. Partially strict non-
recursivedatatypes. In Journal of Functional Programming 3(2), pp. 191-
215.

[Lero92] Leroy X. 1992. Unboxed objects and polymorphic typPrgpc. 19th Symp.
Principles of Programming Languages, pp. 177-188.

[MuKISc96] Mullin, L.R., W.E. Kluge and S. Scholz. 1996. On Programming
Scientific Applicationsin SAC - a Functional LanguageExtendedby a
Subsystenfor High-Level Array OperationsProc. of the 8th International
Workshop on Implementation of Functional Languages.

[PeLa91] Peyton Jones, S.andJ. Launchbury.1991. Unboxedvaluesasfirst class
citizens in a non-strict functional language.In Proc. of Conference on
Functional Programming Languages and Computer Architecture (FPCA
"91), Sept. 1991, Cambridge, LNCS 523.

[PeWa92] Peyton Jones, S.L. and P. Wadler. 1992. Imperative functional
programming ACM Symposium on Principles of Programming Languages
(POPL), pp.71-84.

[PlaEe95]Plasmeijer,M.J., andM.C.J.D. van Eekelen.1995. Clean 1.1 Reference
Manual. Technical Report. University of Nijmegen, The Netherlands.

[Serr96] SerrarensP.R. A CleanConjugateGradientAlgorithm. 1996. Proc. of the
8th International Workshop on Implementation of Functional Languages..

[SNGP91]Smetsers,).E.W., E.G.J.M.H. Nocker, J.H.G. van Groningenand M.J.
Plasmeijer. 1991. Generating Efficient Cdde Lazy FunctionalLanguages,
In Proc. of Conference on Functional Programming Languages ad
Computer Architecture (FPCA '91) , Cambridge, MA, USA, Springer-
Verlag, LNCS 523, pp. 592-617.

[Wadl86] Wadler.P. 1986. A new array operationfor functionallanguagesin Proc.
Graph Reduction Workshop, Santa Fe, Springer Verlag, LNCS 295.

Appendix: benchmark programs

1 Implementation of the Quicksort Algorithm in Clean

module quicksort;

import StdEnv;

:: SortElement:==Int;

:: SortArray:=={#SortElement};

quick_sort :: *SortArray -> .SortArray;
quick_sort a0
= quick_sortl 0 (n_elements-1) a;

(n_elements,a) = usize a0;

quick_sortlbea
| b>=e
= a’
quick_sortl b e a=:{[b]=ab,[m]=am}
=find_large am (b+1) e {a & [m]=ab};
{ m=(b+e)>>1;

find_large :: Int Int Int *SortArray -> .SortArray;
find_large amIra
| I<=e && a.[llx=am
=find_large am (I+1) r a;
=find_small_or_equalam I r a;

find_small_or_equal :: Int Int Int *SortArray -> .SortArray;
find_small_or_equalamIra
| r>b && a.[r]>am
=find_small_or_equal am | (r-1) a;
| I<r
(al,a)=uselect a |;
(ar,@)=uselectar;
=find_large am (I+1) (r-1) {a & [[]=ar,[r]=al};
| b==r
= quick_sort2 (r-1) (r+1) {a & [b]J=am};
(ar,a)=uselectar;
= quick_sort2 (r-1) (r+1) {a & [r]=am,[b]=ar};

quick_sort21ra
=if (I-b>=e-r)
(quick_sortl b | (quick_sortl r e a))
(quick_sortl r e (quick_sortl b | a));
}
}
unsorted_array n_elements
=fill_unsorted_array 0 n_elements (createArray n_elements 0);
{fill_unsorted_arrayisa
|i<s
=fill_unsorted_array (i+1) s {a & [i]=(s-i-1) bitxor Ox2a},
= a’
}
check_sort :: !Int !Int {#Int} -> Bool;
check_sort n n_elements a
| n==n_elements = True;
|a[n]==n =check_sort (n+1) n_elements a;
repeat_sort 0 = True;
repeat_sort n
| check_sort 0 n_elements (quick_sort (unsorted_array n_elements))
=repeat_sort (n-1);
where { n_elements=200000; }
Start = repeat_sort 10;

2 Implementation of the Heapsort Algorithm in Clean

module heapsort;

import StdEnv;

:: SortElement:==Int;

:: SortArray:=={#SortElement},

heap_sort a0
| n_elements<2
=a
= sort_heap max_index (make_heap (n_elements>>1) max_index a);
{ max_index=n_elements-1;

make_heap :: Int lInt *SortArray -> *SortArray;
make_heap (-1) max_index a = a;
make_heap i max_index a={[i]=ai}
=make_heap (dec i) max_index (add_to_heap i ((ix<1)+1) max_index ai a);

sort_heap :: Int *SortArray -> *SortArray;
sort_heap i a=:{[i]=ai,[0]=a0}
|i==
={a & [0]=ai,[i=a0},
= sort_heap deci (add_to_heap 0 1 deci ai {a & [i]=a0});
with { deci=i-1; }

add_to_heap :: Int Int !Int SortElement *SortArray->*SortArray;
add_to_heapijmax_index ai a
| >=max_index
= if ((>max_index)
{a &[i] = ai}
(if (ai<ayj)
{a’ &[il=aj,[]=ai}
{a’ &[il=ai});
with { (aj,a’)=uselect a j; }
add_to_heap i j max_index ai a=:{[j]=aij,[j1]=aj1}
| aj<ajl
=if (ai<ajl)

(add_to_heap j1 ((j1<<1)+1) max_index ai {a & [i]=aj1})
{a &[il=ai}
= if (ai<aj)
(add_to_heap j ((j<<1)+1) max_index ai {a & [i]=aj})
{a &[ij=ai};
where {j1=j+1; }

where { (n_elements,a) = usize a0; }

repeat_sort 0 = True;
repeat_sort n
| check_sort 0 n_elements (heap_sort (unsorted_array n_elements))
=repeat_sort (n-1);
where { n_elements=200000; }
Start = repeat_sort 10;

3 Implementation of the Quicksort and Heapsort Algorithms in C

#include <stdlib.h>
#include <stdio.h>
static void quick_sort1 (int b,int e,int af])
{int m,l,r,ab,am;
while (b<e){
m=(b+e)>>1;
ab=a[b]; am=a[m]; a[m]=ab;
I=b+1; r=g;
for (X
while (I<=e && a[l]<=am)
++;
while (r>b && a[r]>am)
-
if (I<r){
int alar;
al=all]; ar=ar];
a[ll=ar; a[r]=al;
+H; -,
}else
break;

}
if (b==r) a[b]=am;
else {int ar; ar=alr]; a[rJ=am; a[b]=ar; }
|=r-1; ++r;
if (I-b>=e-r){
quick_sortl (r,e,a);
e=l;
}else {
quick_sortl (b,l,a);
b=r;
}
}
}
static void quick_sort (int af],int n_elements)
{ quick_sort1 (0,n_elements-1,a);
}
static void add_to_heap (int i,int j,int max_index,int ai,int a[])
{
while (j<max_index){
intj1,aj,aj1;
j1=j+1; aj=alf]; ajl=afj1];
if (aj<aji){
if (ai<aj1){

alil=aj1;
i=j1; j=(1<<1)+1;
}else {
a[i]=ai;
return;
}
}else {
if (ai<aj)}{
afil=aj;
i=j; j=(<<1)+1;
}else {
a[i]=ai;
return;
}
}
}
if (>max_index){
a[i]=ai;
}else {
int aj;
aj=alj];
if (ai<aj{ ali]=aj; afj]=ai; } else { a[i]=ai; }
}
}
static void heap_sort (int af],int n_elements)
{
int max_index,i;
if (n_elements<2)
return;
max_index=n_elements-1;
for (i=n_elements>>1; il=-1; --i)
add_to_heap (i,i+i+1,max_index,a[i],a);

i=max_index;
while (i'=1){
int ai;

ai=ali]; a[i]=a[0]; --i;
add_to_heap (0,1,i,ai,a);
}
{int a0,ai; a0=a[0]; ai=a(i]; a[0]=ai; a[i]=a0; }
}
int main (void)
{
long begin_time,end_time; int n_elements,*ai,int count;
n_elements=200000; a=malloc (n_elements*sizeof (int));
if (@'=NULL)Y
printf ("\n"); begin_time=TickCount();
for (count=0; count<10; ++count){
for (i=1; i<=n_elements; ++i)
a[i-1]=(n_elements-i) * 0x2a;
[* quick_sort (a,n_elements); */
heap_sort (a,n_elements);
check_sort (a,n_elements);
}
end_time=TickCount(); printf ("%g\n",(double)(end_time-begin_time)/60.0);
}
return 1;

}

