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Abstract

We present a new approach to implementing arrays in a pure lazy
functional programming language. The arrays can be updated destructively by
using uniqueness typing, and the elements can be unboxed. We describe the
implementation of these arrays in the functional programming language
Clean 1.1. The performance of two sorting algorithms and a fast fourier
transformation written in Clean using arrays is compared with similar
programs written in C. The current implementation of Clean is on average
about 25 percent slower than C for these programs.

1 Introduction

Until recently, most implementations of pure lazy functional programming languages
had limited or no support for arrays. The main reason for this lack was that an
implementation could not update arrays in place, but had to copy the array first before
an element could be changed. This copying is necessary because there may be other
references to the array in the program, and changing the array will cause a side effect,
which of course is not allowed in a pure language.

This update problem also made implementation of efficient input/output very
difficult. For example, writing to a file or to the screen can only be done without a
side effect if there are no more references in the program to the old file (the file before
the write) or the old screen.

A way to solve such problems is by using uniqueness typing [BaSm93].
Uniqueness typing tries to determine at compile time which objects are unique using a
combination of reference counting, type checking and program analysis. An object
passed as an argument to a function is unique if there is only one reference to it when
the function is applied. An array update function on a unique array can now be
implemented efficiently. When the update function is called at runtime, there is only
one reference to the array, which can therefore be updated in place.

The remainder of this paper is organised as follows. In section 2 we describe lazy,
strict and unboxed arrays in Clean. Section 3 combines these 3 kinds of arrays using a
type constructor class. Section 4 discusses arrays of unique elements. In the next
section the performance of unboxed arrays is compared with arrays in C. We give a
few concluding remarks in section 6.



2 Lazy, Strict and Unboxed Arrays

The functional programming language Clean [PlaEe95] uses uniqueness typing,
among other things, to implement destructively updateable arrays. There are three
kinds of arrays in Clean: lazy, strict and unboxed. Lazy arrays are the most general
ones, but also the most inefficient ones. Strict arrays are more efficient because the
array elements are always evaluated (in root normal form). Unboxed arrays occupy less
memory and are even more efficient. Lazy, strict and unboxed arrays are considered to
be of different types. The overloading mechanism is used to handle arrays in a uniform
manner. This is discussed is section 3.

2.1 Lazy Arrays

To manipulate (lazy) arrays the following functions have been predefined in the
standard library of Clean 1.1:

createArray :: !Int e         -> .{e}
update      :: !*{.e} !Int .e -> .{.e}
select      :: !.{.e} !Int    -> .e
uselect     :: !u:{e} !Int    -> (e, !u:{e})
size        :: !.{.e}         -> Int
usize       :: !u:{.e}        -> (!Int, !u:{.e})

An array with elements of type e is denoted as {e} . Special symbols appear in the
specification of a Clean type. For instance, !  is a strictness annotation. The other
strange symbols have to do with uniqueness typing. A ‘*’  before a type indicates that
the type is unique. A u:  before a type indicates that the type has a uniqueness attribute
variable u. A type annotated with a uniqueness attribute variable can be unified with
either a unique or a non-unique type. Usually, such a uniqueness attribute variable
occurs several times in a function type. In an instance of a function type all types
annotated with the same variable are either all instantiated with a unique type or all
with a non-unique type. For example, the two u:  before the array type in the uselect

function indicate that if uselect  is used on a unique array, the array returned in the
tuple is also unique. Furthermore, if uselect  is used on a non-unique array, the
returned array will be non-unique as well.
Dots are used as an abbreviation to reduce the number of uniqueness attribute
variables. A dot before a type variable v  indicates that all type variables v  annotated
with a dot have the same anonymous uniqueness attribute variable. Prefixing a type,
that is not a type variable, with a dot indicates that the type has an anonymous
uniqueness attribute variable that does not occur anywhere else in the function type. A
more detailed explanation of uniqueness attributes can be found in the Clean reference
manual  [PlaEe95].



createArray n e returns a one-dimensional unique array of n elements, all
elements are initialised with e. The indices of the array are the integers from 0 to n-1 .

update a i e returns an array which is identical to a, except that the element
indexed by i  of the array is updated with e. This function can only be used if a is a
unique array.

select a i  returns element i  of array a.
uselect a i  returns a tuple with the i th element of the array a and the array

itself. This function is usually used to select elements from unique arrays, because we
usually cannot use the select  function to select an element from a unique array and
then later use this array as a unique array as well. The compiler does not accept this
because in such a case there would be more than one reference to the array. Because
uselect  also returns a 'new' array, which is identical to the array before the selection,
we can select an element from a unique array and still use the (new) unique array.

size a  returns the number of elements of array a.
usize a returns a tuple with the number of elements of array a and the array.

Like uselect , this function is usually used to obtain the size of a unique array.

Clean 1.1 also includes the following syntactic sugar to manipulate arrays. Instead
of update a i n, one may write {a & [i]=n} . Several updates at once are also
possible, for example: {a & [i]=n,[j]=m} . select a i  can also be written as:
a.[i] . uselect 's can be done in patterns, for example:

swap a=:([i]=ai,[j]=aj}   =   {a & [i]=aj,[j]=ai}

is equivalent to:

swap __a = let! s=uselect _a j
           in   {a &[i]=aj,[j]=ai}

 where
(ai,_a) = uselect __a i
(aj,a)  = s

Selections in patterns are evaluated immediately to prevent space leaks (see section
2.2).

Arrays are stored in the heap. In a lazy context [PlaEe95] an array is represented by
a node consisting of 2 machine words (a word consists of 32 bits in current
implementations). The first word is an ARRAY descriptor, the second word is a pointer
to another node in the heap. This other node consists of 3+n words, where n is the
number of elements. The first word of these contains a descriptor and the second word
the array size. The third word is 0 for lazy arrays. The remaining n words contain
pointers to the elements of the array (nodes in the heap).



In a strict context the 2 word array indirection node is not used. In this case an
array is represented only by the node of size 3+n. The compiler will create a new array
indirection node if the array is later also used in a lazy context.

The advantage of this scheme is that we save an extra pointer indirection when we
want to load or store information in the array. The disadvantage is that we sometimes
have to create new array indirection nodes.

In the best case the code generated by the Clean compiler for a CISC processor for
the update , select  and size  functions consists of only one machine instruction.
This happens if the function is in a strict context, the compiler can determine that all
arguments are evaluated, and the values of the arguments are already in registers.
However, the compiler has to generate 3 instructions on most RISCs to do a selection
or update instead of just one.

2.2 Inefficiency of Lazy Arrays

Although the array functions (except createArray ) described above can be
implemented in O(1), efficiency is still not as good as in (strict) imperative
programming languages like C. This has the following reasons:
• More memory is required to store lazy arrays. For example, in an imperative

language like C an array of n integers can be stored in n machine words. In Clean
we need 3+3*n machine words. The elements of the array have to be pointers to
nodes in the heap, because an element of an array can be unevaluated, and
unevaluated expressions are stored in the heap as closures. So, even if an array
contains evaluated integers, we still have to store them in the heap. To be able to
recognise that an element is an evaluated integer we have to mark it. Therefore we
store a descriptor just before the value of the integer. This descriptor is used by the
garbage collector. So, for every evaluated element we have to store a pointer, a
descriptor and a value. This means we have to store 3 words per element.

• Access to values in array elements is more expensive. For example, to select an
integer, we first have to load a pointer, then load the descriptor, then examine the
descriptor to find out if the integer has already been evaluated, and if it is
evaluated, load the value. If the integer has not yet been evaluated, we have to call
the evaluation code and later load the value. Only one load instruction is required
to select an integer from an array in a language like C on a CISC processor.

We noticed that many programs using these lazy arrays use much more memory than
expected. Even if all the extra costs of lazy arrays are taken into account. The most
important reasons for this high memory use are:
• The update  function does not evaluate the new array element. So, in most cases

the update  function will store a closure in the array. In many programs an array
is updated many times before an element of the array is used. In such cases many



elements of the array become closures, which are usually larger in size than an
evaluated array element.

• A lazy array selector contains a reference to the whole array, not just to one
element. The compiler creates closures for array selectors in a lazy context. Such a
closure contains a pointer to the array and the index. The garbage collector
generally cannot determine which element is selected from the array, because the
index could still be unevaluated. So, even if there is just one reference to a
selection closure of an array, the memory referenced by the whole array cannot be
deallocated. For example, if a function creates a new vector by adding two vectors,
the memory used by these two vectors cannot be deallocated as long as there are
references to the new vector and only one element of this new vector is
unevaluated.

2.3 Strict Arrays

To be able to write more efficient programs, Clean 1.1 also has strict arrays. A strict
array with elements of type e is denoted with {!e} . The implementation stores strict
arrays in the same way as lazy arrays, and the same kind of functions can be used for
strict arrays as for lazy arrays. Different from the previous approach is that the
update , createArray  and uselect  functions evaluate the array element to root
normal form. The types of the functions now become:

createArray :: !Int !e          -> .{!e}
update      :: !*{!.e} !Int !.e -> .{!.e}
select      :: !.{!.e} !Int     -> .e
uselect     :: !u:{!e} !Int     -> (!e, !u:{!e})
size        :: !.{!.e}          -> Int
usize       :: !u:{!.e}         -> (!Int, !u:{!.e})

As a consequence, the select  function for strict arrays can be implemented more
efficiently than for lazy arrays, because it does not have to evaluate the element
selected from the array. Also strict arrays cannot contain closures, so the memory use
problem caused by the laziness of the update function does not occur with strict arrays.
This high memory use caused by array selectors in a lazy context is still a problem,
but happens less often. For example the vector add function will no longer build
selection closures, because the sum of the vector elements is computed before it is
stored in the new vector.

Unfortunately, the amount of memory occupied by a strict array is still as bad as
for a lazy array with evaluated elements. For example, we still have to represent an
array of integers by an array of pointers to integer nodes in the heap. However, the
problem is now only caused by the fact that the predefined array functions are of
polymorphic type. This means that the select  function can be used to select an
element from any type of array it is applied to. Therefore, array elements have to be
represented in a uniform way as well.



This polymorphism also has its advantages. For example, one only has to write
one function, like swap, reverse  or copy , and one can use it for all types of arrays.
In an imperative languages like C a function that swaps two integers in an arrays
cannot be used to swap two reals. A swap function that can be used for all arrays can
be implemented in C, if we pass the size of an element of the array to the function,
and use it to calculate the addresses of the elements. But such a function is slower, and
more difficult to use.

2.4 Unboxed Arrays

We now choose the most efficient representation for every type of array. So, an
array of n integers is stored in n+3 machine words. The elements of such arrays are
unboxed and strict. We denote such an unboxed array type with {#e} , where e is the
type of the elements.

The Clean compiler stores the unboxed arrays in a strict context as follows: (we
assume the sizes of integers and pointers are 4 bytes, and n is the number of elements
of the array)
• {#Char} : 8+n bytes, a string descriptor, the size and the characters.
The first 12 bytes of all other unboxed array nodes are a descriptor, the size, and a
descriptor that describes the elements, for example an integer descriptor for an {#Int} .
• {#Int} , {#Real}  and {#Bool} : 12+es*n bytes, where es is the size of an

element: 4, 8 or 1 bytes.
• Arrays of records: 12+es*n bytes, where es is the sum of the sizes of the elements

of the record.
• Arrays of arrays: 12+4n bytes, for this array only. 'Unboxed' arrays of arrays are

represented as arrays of pointers to arrays, without the extra array indirection node
for the elements.

At most 3 align bytes follow a {#Char}  or a {#Bool}  to align the next node in the
heap at a word aligned address (multiple of 4).

The problems caused by the different representations for different types of arrays
can be solved using Clean’s overloading mechanism. For every basic type, for
example Int , we define:

createArray_int :: !Int !Int              -> .{#Int}
update_int      :: !*{#v:Int} !Int !v:Int -> .{#v:Int}
select_int      :: !.{#v:Int} !Int        -> v:Int
uselect_int     :: !u:{#Int} !Int         -> (!Int, !u:{#Int})
size_int        :: !.{#.Int}              -> Int
usize_int       :: !u:{#v:Int}            -> (!Int, !u:{#v:Int})

Of course, we don't want to write select_int  when writing a program using
integer arrays, so we define a class for every array function. For example for select :



class select e :: ! {#.e} !Int -> .e

and we define instances for all element types, for example:

instance select Int
where

select a i = select_int a I

instance select Real
where

select a i = select_real a i

Now we can still write select  and the type checker will try to determine which
instance of select  should be used. If a programmer defines a function that uses
overloaded array functions, the compiler will automatically generate specialised
versions of this function, if the overloading of the array functions cannot be resolved
while typing the function. In this way the compiler can remove nearly all overloading
within a module. So the program will usually be just as efficient as it would have
been without using overloading.

When such an overloaded function is exported, by specifying the function type in
a definition module, and is called by a function in another module, the compiler
cannot generate specialised versions. If this happens, the function will be very
inefficient. To prevent this, the programmer can tell the compiler to generate
specialised versions by adding  an export  statement in the definition module.

Using Cleans unboxed arrays as described above in combination with strictness
annotations, we expect for most programs to be able to generate code which is about
as efficient as code generated by imperative languages like C. We will compare the
efficiency of some small Clean programs written in this way with similar programs
written in C, this is done in section 5.1.

3 Combining Lazy, Strict and Unboxed Arrays

We have now defined three kinds of arrays: lazy arrays, strict arrays and unboxed
arrays. So far we have used the same names for functions that manipulate each kind of
array. We prefer to do this in this way, instead of having 3 different names for every
function. We can then write a program using for example lazy arrays, and then later
decide to change it to unboxed arrays without having to rewrite the whole program.
All we have to do is change a few types. If we use a type synonym we may even have
to change only one type.

We can achieve this by using Cleans type constructor classes, which are similar to
Gofers type constructor classes [Jone95].



We define a type constructor class Array  with instances lazy, strict and unboxed array
with:
instance Array { }, {!}, {#}

For this class instances are defined for the predefined array functions for lazy, strict and
unboxed arrays. The instances for unboxed arrays are:

class Array a
where

createArray :: !Int !e         -> .(a e)         | createArray_u e
update      :: !*(a .e) !Int .e-> .(a .e)        | update_u e
select      :: !.(a .e) !Int   -> .e             | select_u e
uselect     :: !u:(a e) !Int   -> (!e, !u:(a e)) | uselect_u e
size        :: !.(a.e)         -> Int            | size_u e
usize       :: !u:(a .e)       ->(!Int,!u:(a .e))| usize_u e

The classes createArray_u , update_u , etc. are the same as the classes defined for
unboxed arrays in section 2.4. So for example, class select_u  is the same as class
select  in section 2.4.

So, the instance of select  for unboxed arrays has type:
select :: !{# .e } !Int -> .e | select_u e

If the compiler cannot resolve the overloading in the type of the element, but can
determine that it is an unboxed array, it will call this select  with three parameters:
the two normal parameters (the array and the index) and a select_u  function added by
the overloading mechanism. So, all the implementation of this function has to do is
call the select_u  function with the array and the index, and then return the result of
this function application.

The implementation of the instances of the select  function for lazy and strict arrays
does not need the select_u  function, because the implementation of these selects
does not depend on the type of the elements of an array. So the instances for lazy and
strict arrays for select  are:

select :: !{ .e } !Int -> .e | select_u e
select a i = select_lazy_array a i

select :: !{! .e } !Int -> .e | select_u e
select a i = select_strict_array a i

where select_lazy_array  is the select  function for lazy arrays and
select_strict_array  is the select  function for strict arrays.

We define the instances of the other predefined functions in the same way.



The instances of createArray  and update  are strict in the argument that passes the
element for strict and unboxed arrays, but not for lazy arrays. The same goes for the
element returned by uselect . The types defined in class Array  for these instances are
lazy in these arguments/results. To prevent loss of strictness information the compiler
recognises these functions, and adds the strictness information for strict and unboxed
arrays after typechecking.

We can now use the predefined array functions for all types of arrays, and the
typechecker will determine the right instance. There are, however, also some
disadvantages:
• When the compiler cannot determine whether an array is lazy, strict or unboxed or

what the type of the array element is, and it cannot generate or use a specialised
version, these array functions will be very inefficient.

• If the compiler cannot determine whether an array used by a function is lazy, strict
or unboxed, the overloaded function type looks rather complicated.

4 Arrays of Unique Elements

With the array functions defined above we cannot create a unique array of which the
elements are unique as well. It is also not possible to select a unique element from an
array with the uselect  function. Selection can be done with the select  function, but
this can be done only once: after the selection we no longer have a unique reference to
the array.

The createArray  function cannot create a unique array because it initialises all
elements with the same value. If the array has more than 1 element, there will be
more references to this initial value, therefore the elements cannot be unique.

So to create an array with unique elements, we have to compute a new value for
every array element. We can do this by using an array comprehension
[Wadl86,AnHu90] in Clean, which computes the value for every array element.

To compile such an array comprehension, the Clean compiler uses a function that
creates an array of undefined elements, which may be unique, (_createArray ). Since
the compiler knows that all array elements will be updated immediately after the array
has been created, it does not have to initialise the array, so this function is also faster.
The current implementation does however initialise pointers in arrays with Nil ,
because the garbage collector cannot deal with such uninitialised structures.

Selecting a unique element from an array (without losing the array) is not
possible, because after the selection we would have two references to the element: the
element is  returned by uselect  and the returned array  contains it as well.



The only way to make a selection of a unique element possible, seems to be by
removing the element from the array. We can do this by replacing the selected array
element by a new value with the function:

replace :: !*(a .e) !Int .e -> (.e, !*(a .e)) | Array a & replace_u e

which returns a tuple with the selected element and an array in which the selected
element has been replaced by the third argument of replace .

With the replace  and update  functions we can compute a new unique element of an
array that uses the old unique value in the computation in the following way. We use
replace  to select the element, then we compute the new value, and put it back in the
array with update . This is of course slower than a modification using select  and
update , but an even more serious problem is that we temporarily need to create a
unique element, which is inefficient or almost impossible for some types.

In a future version of the compiler we hope to make it easier to modify unique array
elements in this way, may be by adding a function or special syntax.

4.1 Multidimensional Arrays

So far we have only looked at one-dimensional arrays. Multidimensional arrays are
implemented in Clean as arrays of arrays.

Using arrays of arrays  has certain advantages over implementing multi-
dimensional arrays as a separate array type implemented by mapping two or more
indices to one index in a one-dimensional array. For example, an array of strings
({#Char} ) can be used as a one-dimensional array, but also as a two-dimensional
array. A row of a matrix can be used as a vector without having to copy it, and the
row may even be unevaluated. Without loop optimisations, updating an element of an
array of arrays can usually be done faster than updating an element of a flat two-
dimensional array, because the multiplication that is required for the index calculation
is usually more expensive than loading the address of the row. There are also
disadvantages: arrays of arrays occupy more memory. Multidimensional arrays can be
accessed faster when certain loop optimisations are performed.

To be able to update such an array of arrays, all one-dimensional arrays have to be
unique. For instance, to be able to update a lazy two-dimensional array of integers, we
have to use an array of type *{*{Int}} .

To select an element from such an array, we would start by using uselect  with the
first index, which yields an array of type *{{Int}}  and an array element of type
{Int} . The elements of the returned array (of type *{{Int} ) are no longer unique,



since the selection added a reference to an array element. Therefore we can no longer
update this array after this selection.

To update a multidimensional array, we would start with a uselect  with the first
index. The elements of the returned array are no longer unique. The returned element is
also not unique, so we cannot update it.

It is not possible to select or update a multidimensional array more than once with the
select , uselect  and update  functions. So we have to invent a trick. Instead of just
selecting an element, we select the element and also temporarily replace the selected
element in the array by a dummy using the replace  function. To select from a two-
dimensional array of type *{*{e}}  we need to create a temporary array, use replace ,
uselect  and then use update . To update an element from an array of type *{*{e}}

we need to create a temporary array, use replace , and then use update  twice.

Clearly we don't want to write selections from and updates of multidimensional arrays
in this complicated and inefficient way. We decided to extend the language with syntax
for multidimensional selections and updates. The compiler transforms these selections
and updates to several one-dimensional selections and updates.

The compiler uses the following functions to efficiently implement multidimensional
selections: (they cannot be used by the programmer )

_uselect :: !u:(a .e) !Int -> (.e,!u:(a .e)) |Array a & _uselect_u e
_uselectn:: !(!.(a .e),!.m) !.Int ->(.e,!.m) |Array a & _uselectn_u e
_uselectl:: !(!.(a e ),!.m) !.Int -> (e,!.m) |Array a & _uselectl_u e
_update :: !(!*(a .e),!*m) !Int .e -> *m     |Array a & _update_u e

The _uselect  function is similar to the uselect  function, but returns a unique array
element. Of course this element is not unique, but the compiler uses the function in
such a way that this doesn't cause any problems.

The _uselectl  function has two arguments. The first one is a tuple with an array
and a value, this value is returned in a tuple by this function. The second argument is
an index. The result of the function is the array element selected by the index and the
value passed to the function as the second element of the tuple.

The _uselectn  function is similar to the _uselectl  function, but returns a
unique array element. As for _uselect , this element is not unique, but the compiler
uses the function in such a way that this doesn't cause any problems.

The first argument of the _update  function is a tuple consisting of an array and a
value that is returned by the function. The second argument is an index into the array.
The last argument is the new array element. The function updates the element selected
by the index with the new array element and returns the second element of the tuple.



A two dimensional selection a.[i,j]  in a pattern is transformed by the compiler
into:
_uselectl (_uselect a i) j

A two dimensional update {a & [i,j]=n}  is transformed into:
_update (_uselect a i) j n

a.[i,j,k]  is transformed into:
_uselectl (_uselectn (_uselect a i) j) k

{a & [i,j,k]=n}  is transformed into:
_update (_uselectn (_uselect a i) j) k n

If there are more than 3 dimensions, for every extra dimension a _uselectn  is added.

We can only compute the size of the first dimension of a multidimensional unique
array with usize . So we also have to implement such a transformation to compute
the size of the other dimensions.

The argument m passed to and returned by the _uselectn , _uselectl  and _update

functions is always an array. This array would normally be passed and returned with an
extra array indirection node. The compiler recognises these functions and prevents this
inefficiency.

5 Performance

5.1 Performance Results

To compare the performance of arrays in Clean 1.1 with C we wrote variants of the
well-known quicksort, heapsort and fast fourier algorithms in Clean 1.1 and C. We
used unboxed arrays in Clean and added strictness annotations to types of functions
when necessary to make the functions strict in all arguments and tuple results. We
then rewrote the programs in C using the same data structures. Tail recursive calls in
C were manually optimised to while loops, because the C compilers did not perform
this optimisation.

We used a PowerMacintosh 7100/80 with a 80 MHz PowerPC 601 cpu, 32 Mb of
memory and 256 Kb secondary cache running system 7.5.3 without using virtual
memory. We used the most recent version of the Clean 1.1 compiler. The compiler
option to check whether array indices are in-range was turned off.
We compared the performance with two C compilers: Metrowerks CodeWarrior C 9,
compiler version v1.5, and Apple's MrC version 1.0f4e1. We used maximum
optimisation for both compilers. Global optimisation level 4, optimise for speed,



peephole optimisation, instruction scheduling for 601, use FMADD & FMSUB for
CodeWarrior and -opt speed for MrC.
quicksort  and heapsort  repeated the following 10 times: create a list of 200,000
integers, sort the list and check if the list was correctly sorted. The source code of
these sorting programs can be found in the appendix. The fft  and fftc  programs
create an array of 65536 complex numbers and then do a fast fourier transform
followed by a reverse fast fourier transform on its result.
These are the results:

Clean CwC MrC Clean/CwC Clean/MrC
quicksort 6.45 5.63 7.62 1.15 0.85
heapsort 12.13 8.55 7.60 1.42 1.60
fft 5.51 4.67 4.47 1.18 1.23
fftc 2.38 2.20 1.60 1.08 1.49

The first 3 columns contain execution times of PowerPC code, in seconds, of the
Clean program, the C program compiled with Codewarrior C, and the C program
compiled with Mr C. The last two columns are the execution time of the Clean
program divided by the execution time of the C program for each C compiler.

There are two versions for the fast fourier program (fft  and fftc). We first wrote fft .
It was much slower than we expected. This was caused by a larger number of cache
misses. We rewrote the program to use a recursive fft in the beginning that divided the
array in two parts for every pass, did the other passes of the fft for the first part, then
for the second part and then merged the two parts. When the parts were small enough
to fit in the primary cache, we used the same algorithm as before. This reduced the
number of cache misses and it was more than twice as fast.

5.2 Possible Improvements

On the PowerPC double precision floating point values have to be stored at double
word aligned (multiple of 8) addresses for maximum performance. A misaligned
floating point load from the cache usually takes 2 clock cycles instead of 1 to execute
on a PowerPC 601, and a misaligned floating point store in the cache usually spends
5 clocks in the execution stage instead of 1. The current implementation of Clean does
not store floating point values at double word aligned addresses, but only at word
aligned addresses. To determine the cost of this inefficiency we changed the fft  and
fftc  C programs to place the arrays at non double word aligned addresses.
These programs (fftunalignc  and fftcunalignc ) were about 20 percent slower:

Clean CW MrC Clean/CW Clean/Mrc
fft 5.51 4.67 4.47 1.18 1.23
fftunalignc 5.51 5.78 5.47 0.95 1.01
fftc 2.38 2.20 1.60 1.08 1.49
fftcunalignc 2.38 2.65 1.92 0.90 1.24



The fft  and fftc  C programs store the arrays always at double word aligned
addresses. The malloc  function of one of the C compilers did not return double word
aligned addresses.

So for better performance we would have to change the Clean runtime system to
allocate doubles at double word aligned addresses. Allocating arrays of reals at these
addresses can be done easily. Changing the sliding compacting garbage collector to
move these arrays to double word aligned addresses is more difficult.

Aligning doubles on the stack is also more difficult. We probably have to align
all stack frames at double word addresses, which would result in higher use of stack
space even for programs that do not use reals. Another option is to use a separate
stack for reals. For the fft  programs aligning reals on the stack is not important,
because few reals are stored on the stack.

The code generated for loops can be improved easily. The test for the end of the loop
is usually done in a pattern or guard. In such a case the current compiler generates code
which looks like this:
function_entry:   cmp          index,size
                  beq          guard_false
guard_true:       do something
                  bra          function_entry
guard_false:

We can reduce the number of branches in the loop by changing this to:
guard_true:       do something
function_entry:   cmp          index,size
                  bne          guard_true
guard_false:

Applying this transformation to quicksort would reduce the number of branches in the
most important loops from 3 to 2. A similar transformation would remove an
incorrectly predicted branch from the most important loop of heapsort. C compilers do
a similar transformation to reduce the number of branches in loops.

Another optimisation that C compilers perform, and has not yet been implemented in
the Clean compiler, is common subexpression elimination of array index calculations.
The Clean compiler generates 2 machine instructions on a RISC to calculate the
address of an element in an array of integers or reals: a shift instruction and an add

instruction. In the quicksort  and fft  programs the same index is used twice in the
same basic block: when two elements are swapped and in the function merge . The
addresses can be calculated once, and then used by more load or store instructions,
saving 2 instructions per additional load or store.



We could also try to eliminate the add instruction in the address calculation. The
compiler has to generate it because the first element of an array is not stored at offset
0 from the address of the array, but at offset 12 or 8. If an array is used several times,
we could calculate the address of the element once, and use the address as the base for
the indexed load or store instruction. This saves one instruction for every additional
load or store of the same array.

We could remove this extra offset calculation in all cases, if we change the way we
store nodes in the heap. In the current implementation we cannot pass the address of
the first element of an array  instead of a pointer to the node, because the descriptor
has to be at offset 0 from the address. This is necessary because of the garbage
collector and the way closures are evaluated.
In the current implementation the address of a node is the address of the descriptor of
the node. If instead we would store the address of the word following the descriptor, we
could remove the extra offset calculation for arrays, but we would have to change this
for all nodes. We would have to change the compiler, the garbage collectors and other
parts of the runtime system. Code that doesn't use arrays would probably still be just
as efficient on a RISC after this modification.

The code generated for the fast fourier transform by the Clean compiler can probably
be improved with a simple instruction scheduler. Instruction scheduling is not very
important for the quicksort  and heapsort  programs.

5.3 Related Work

In Haskell, lazy arrays can be created using comprehensions, but in-place array updates
are not possible. Several analyses and transformations are required to compile these
comprehensions efficiently [AnHu90]. Currently none of the available Haskell
compilers are able to do this.

The Glasgow Haskell compiler (GHC) has been extended with an array
implementation based on monads [PeWa92]. Unboxed arrays (called Bytearrays) of
basic types can be manipulated. For each basic type, functions are available to create,
read or write an array. For example writeIntArray  and writeDoubleArray  are
available, but there is no writeArray  function that can be used for every Bytearray.
[Serr96] compares the performance of both GHC’s Bytearrays and monolothic arrays
with Clean’s unboxed arrays for a conjugate gradient  algorithm, and Clean was
always at least ten times as fast.

Using analyses, program transformations and reference counting strict pure
functional languages like SISAL [FiOl95,Feo92] and SAC [MuKlSc96] achieve good
performance for scientific applications using arrays.

The Clean compiler [SNGP91] inserts the necessary coercions to box or unbox
basic types, tuples and records as described in [NöSm93]. Leroy [Lero92] also



discusses automatic coercion of these data types. However, the transformation Leroy
describes cannot unbox arrays. Unboxed (polymorphic) arrays are also not possible
with unboxed types as described in [PeLa91]. This type system has as disadvantage
that coercions have to be inserted by the programmer.

6 Conclusion

The efficiency of unboxed arrays in Clean 1.1 is good, and it can still be further
improved with simple optimisations. Multidimensional arrays and array of unique
elements are more difficult to use than one dimensional arrays. Strictness annotations,
and sometimes small changes to the program, are still necessary to obtain the most
efficient version of a Clean program.
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Appendix: benchmark programs

1 Implementation of the Quicksort Algorithm in Clean
module quicksort;
import StdEnv;
:: SortElement:==Int;
:: SortArray:=={#SortElement};

quick_sort :: *SortArray -> .SortArray;
quick_sort a0
  = quick_sort1 0 (n_elements-1) a;
  {
    (n_elements,a) = usize a0;

    quick_sort1 b e a
      | b>=e
        = a;
    quick_sort1 b e a=:{[b]=ab,[m]=am}
      = find_large am (b+1) e {a & [m]=ab};
    { m=(b+e)>>1;

      find_large :: Int Int Int *SortArray -> .SortArray;
      find_large am l r a
        | l<=e && a.[l]<=am
          = find_large am (l+1) r a;
          = find_small_or_equal am l r a;

      find_small_or_equal :: Int Int Int *SortArray -> .SortArray;
      find_small_or_equal am l r a
        | r>b && a.[r]>am
          = find_small_or_equal am l (r-1) a;
        | l<r
          # (al,a)=uselect a l;
            (ar,a)=uselect a r;
          = find_large am (l+1) (r-1) {a & [l]=ar,[r]=al};
        | b==r
          = quick_sort2 (r-1) (r+1) {a & [b]=am};
          # (ar,a)=uselect a r;
          = quick_sort2 (r-1) (r+1) {a & [r]=am,[b]=ar};



      quick_sort2 l r a
        = if (l-b>=e-r)
          (quick_sort1 b l (quick_sort1 r e a))
          (quick_sort1 r e (quick_sort1 b l a));
    }
  }
unsorted_array n_elements
  = fill_unsorted_array 0 n_elements (createArray n_elements 0);
  { fill_unsorted_array i s a
      | i<s
        = fill_unsorted_array (i+1) s {a & [i]=(s-i-1) bitxor 0x2a};
        = a;
  }
check_sort :: !Int !Int !{#Int} -> Bool;
check_sort n n_elements a
  | n==n_elements = True;
  | a.[n]==n      = check_sort (n+1) n_elements a;
repeat_sort 0 = True;
repeat_sort n
  | check_sort 0 n_elements (quick_sort (unsorted_array n_elements))
    = repeat_sort (n-1);
  where { n_elements=200000; }
Start = repeat_sort 10;

2 Implementation of the Heapsort Algorithm in Clean
module heapsort;
import StdEnv;
:: SortElement:==Int;
:: SortArray:=={#SortElement};

heap_sort a0
  | n_elements<2
    = a
    = sort_heap max_index (make_heap (n_elements>>1) max_index a);
    { max_index=n_elements-1;

      make_heap :: Int !Int *SortArray -> *SortArray;
      make_heap (-1) max_index a = a;
      make_heap i max_index a=:{[i]=ai}
        = make_heap (dec i) max_index (add_to_heap i ((i<<1)+1) max_index ai a);

      sort_heap :: Int *SortArray -> *SortArray;
      sort_heap i a=:{[i]=ai,[0]=a0}
        | i==1
          = {a & [0]=ai,[i]=a0};
          = sort_heap deci (add_to_heap 0 1 deci ai {a & [i]=a0});
          with { deci=i-1; }

      add_to_heap :: Int Int !Int SortElement *SortArray->*SortArray;
      add_to_heap i j max_index ai a
        | j>=max_index
          = if (j>max_index)
            {a & [i] = ai}
            (if (ai<aj)
              {a` & [i]=aj,[j]=ai}
              {a` & [i]=ai});
          with { (aj,a`)=uselect a j; }
      add_to_heap i j max_index ai a=:{[j]=aj,[j1]=aj1}
        | aj<aj1
          = if (ai<aj1)



              (add_to_heap j1 ((j1<<1)+1) max_index ai {a & [i]=aj1})
              {a & [i]=ai};
          = if (ai<aj)
              (add_to_heap j ((j<<1)+1) max_index ai {a & [i]=aj})
              {a & [i]=ai};
        where { j1=j+1; }
    }
  where { (n_elements,a) = usize a0; }

repeat_sort 0 = True;
repeat_sort n
  | check_sort 0 n_elements (heap_sort (unsorted_array n_elements))
    = repeat_sort (n-1);
  where { n_elements=200000; }
Start = repeat_sort 10;

3 Implementation of the Quicksort and Heapsort Algorithms in C
#include <stdlib.h>
#include <stdio.h>
static void quick_sort1 (int b,int e,int a[])
{ int m,l,r,ab,am;
  while (b<e){
    m=(b+e)>>1;
    ab=a[b]; am=a[m]; a[m]=ab;
    l=b+1; r=e;
    for (;;){
      while (l<=e && a[l]<=am)
        ++l;
      while (r>b && a[r]>am)
        --r;
      if (l<r){
        int al,ar;
        al=a[l]; ar=a[r];
        a[l]=ar; a[r]=al;
        ++l; --r;
      } else
        break;
    }
    if (b==r) a[b]=am;
    else { int ar; ar=a[r]; a[r]=am; a[b]=ar; }
    l=r-1; ++r;
    if (l-b>=e-r){
      quick_sort1 (r,e,a);
      e=l;
    } else {
      quick_sort1 (b,l,a);
      b=r;
    }
  }
}
static void quick_sort (int a[],int n_elements)
{ quick_sort1 (0,n_elements-1,a);
}
static void add_to_heap (int i,int j,int max_index,int ai,int a[])
{
  while (j<max_index){
    int j1,aj,aj1;
    j1=j+1; aj=a[j]; aj1=a[j1];
    if (aj<aj1){
      if (ai<aj1){



        a[i]=aj1;
        i=j1; j=(j1<<1)+1;
      } else {
        a[i]=ai;
        return;
      }
    } else {
      if (ai<aj){
        a[i]=aj;
        i=j; j=(j<<1)+1;
      } else {
        a[i]=ai;
        return;
      }
    }
  }
  if (j>max_index){
    a[i]=ai;
  } else {
    int aj;
    aj=a[j];
    if (ai<aj){ a[i]=aj; a[j]=ai; } else { a[i]=ai; }
  }
}
static void heap_sort (int a[],int n_elements)
{
  int max_index,i;
  if (n_elements<2)
    return;
  max_index=n_elements-1;
  for (i=n_elements>>1; i!=-1; --i)
    add_to_heap (i,i+i+1,max_index,a[i],a);
  i=max_index;
  while (i!=1){
    int ai;
    ai=a[i]; a[i]=a[0]; --i;
    add_to_heap (0,1,i,ai,a);
  }
  { int a0,ai; a0=a[0]; ai=a[i]; a[0]=ai; a[i]=a0; }
}
int main (void)
{
  long begin_time,end_time; int n_elements,*a,i,int count;
  n_elements=200000; a=malloc (n_elements*sizeof (int));
  if (a!=NULL){
    printf ("\n"); begin_time=TickCount();
    for (count=0; count<10; ++count){
      for (i=1; i<=n_elements; ++i)
        a[i-1]=(n_elements-i) ^ 0x2a;
      /* quick_sort (a,n_elements); */
      heap_sort (a,n_elements);
      check_sort (a,n_elements);
    }
    end_time=TickCount(); printf ("%g\n",(double)(end_time-begin_time)/60.0);
  }
  return 1;
}


