
To appear in: proceedings of SEGRAGRA'95, Elsevier.A Derivation System for Uniqueness TypingExtended abstractErik Barendsen Sjaak SmetsersUniversity of Nijmegen�1. IntroductionTraditional functional programming languages are unable to deal with operations withside e�ects. Indeed, by admitting these operations (such as �le manipulations) onerisks the loss of referential transparency since these involve changing the state of aninput object. In recent years, various proposals have been brought up as solutionsto this shortcoming (e.g. Wadler (1990), Guzm�an and Hudak (1990)). The essence ofthese solutions is the restriction of destructive operations to input objects that occuronly once.The uniqueness type system for graph rewrite systems (as presented in Barendsenand Smetsers (1993a) and (1993b)) o�ers the possibility to indicate locality require-ments of functions in the types of the corresponding arguments. These special so-calleduniqueness types are annotated versions of traditional Curry-like types. E.g. the op-eration WriteChar which writes a character to a �le is typed with WriteChar :(Char�; File�)� File�. Here, � ;� stand for `unique' and `non-unique' respectively.Thus uniqueness typing can be regarded as a combined linear (Wadler (1990)) andconventional type system. A logical/categorical approach appears in Benton (1994).In our system, unique types are connected with their non-unique variants via a subtyp-ing mechanism. The uniqueness type system is now part of the functional programminglanguage Clean.Originally, the notion of typing for graphs and rewrite rules had not been de�nedinductively but instead speci�ed in terms of local requirements for a type assignmentto nodes. The present paper describes a simpli�ed version of our original system,using an inductive syntax and natural deduction style type assignment system. Thiscaptures the core of uniqueness typing of graphs, and makes the relation with linearlogic more visible. Apart from this, it makes the work on uniqueness more accessible,especially for people not familiar with graph rewriting. The object language is similarto the equational approach of Term Graph Rewriting as introduced by Ariola and Klop(1993).We start with a speci�cation of the formal language and de�ne a Curry-like (con-ventional) type system for it. After a very brief introduction to uniqueness typing, a�Computing Science Institute, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands, e-mailerikb@cs.kun.nl, sjakie@cs.kun.nl, fax +31.80.652525.1

description of the uniqueness type assignment system is given. For both systems weprove preservance of typing during reduction and the existence of principal types.The original uniqueness type system is rather complex. To avoid that the reader getsentangled in technical details we have left out some of the re�nements. For instance,we do not deal with higher-order functions and the reference analysis is kept as simpleas possible: it does not take the evaluation order into account.2. SyntaxWe present a syntax of a graph-like formal language which incorporates some essentialaspects of graph rewriting: sharing, cycles and pattern matching. The objects are termsgenerated by the following syntax.E ::= x j F(E1; : : : ; Ek) j let x = E1 in E2 j �x[E]:Here x ranges over term variables, and F over some set of symbols of �xed arity (withintended interpretation functions and data constructors). The set of free variables ofan expression, FV(E), is de�ned as usual. A term is called algebraic if it is built fromdata constructors and variables only, using application.Ordinary sharing can be expressed using a let construct, whereas � introduces(direct) cyclic dependencies. E.g., the expressionlet x = 0 in �z[F(Cons(x;G(x; z)))]denotes the graph
Cons

0 G

FOperations on terms are de�ned using rewrite rules . The general form of such arule is F(A1; : : : ; Ak)! E;where FV(E) � FV(~A), and the Ai are algebraic expressions. We only consider left-linear rewrite rules, i.e., rules in which each variable occurs only once in the left-handside. An example is the ruleAppend(Cons(h; t); l)! Cons(h;Append(t; l)):The rewrite semantics of expressions (according to some set R of rules) is de�ned asusual. By E !!R E0 we denote that E rewrites to E0 in zero or more steps.3. Conventional TypingTypes are built up from type variables and type constructors.� ::= � j �1! �2 j T~�:2

A standard type constructor is !; the others are algebraic type constructors which areassumed to be introduced by algebraic speci�cations likeList(�) = Cons(�; List(�)) jNil:The symbols of graph rewrite systems are supplied with a type by a type environ-ment E . Such an environment contains declarationsF : (�1; : : : ; �k)� �;where k is the arity of F. The part of E corresponding to the data constructors isdetermined by the algebraic speci�cations; e.g. for lists one hasNil : List(�); Cons : (�; List(�))� List(�):Due to the separation of speci�cations (rewrite rules, algebraic types) from appli-cations one needs an instantiation mechanism to deal with di�erent occurrences ofsymbols, see below.Our system deals with typing statements of the formB `̀̀E E : �;where B is some �nite set of variable declarations of the form x:� called a basis . Sucha statement is valid if it can be produced using the following derivation rules.B; x:� `̀̀E x : � (variable) B `̀̀E ~E : ~� E `̀̀ F : ~�� � (application)B `̀̀E F ~E : �B `̀̀E E1 : �1 B; x:�1 `̀̀E E2 : �2 (sharing)B `̀̀E let x = E1 in E2 : �2 B; x:� `̀̀E E : � (cycle)B `̀̀E �x[E] : �Instantiation of environment types is de�ned by the following two rules ([� := �] denotessubstitution).E ;F:~�� � `̀̀ F : ~�� � E `̀̀ F : ~�� �E `̀̀ F : ~�[� := �]� � [� := �]This concludes the treatment of graph typings. If we consider objects in the contextof rewrite rules, the symbol environment E in question should be consistent with theserules. We say that E is R-ok if for each ruleF(A1; : : : ; Ak)! E;say with E containing F:(�1; : : : ; �k)� � one has for some BB `̀̀E A1 : �1; : : : ; B `̀̀E Ak : �k; B `̀̀E E : �:We show that typing is preserved during reduction (the so-called subject reductionproperty). 3

Theorem. B `̀̀E E : �E !!R E0E is R-ok 9>=>;) B `̀̀E E0 : �:Furthermore, we prove that the systems has the principal type property : each ty-pable expression E has a type from which all other type for E can be obtained byinstantiation.Theorem. Suppose E is typable. Then there exist B0; �0 such that for any B and �B `̀̀E E : �) B � B�0 ; � = ��0 for some substitution �.4. Uniqueness TypingUniqueness typing combines conventional typing and linear typing, through a referencecount administration. An environment type F : �� � � � � means that F's argumentshould be unique for F, i.e., should have reference count 1. In the same way, uniquenessof results is speci�ed: if G : � � �� ��, then a well-typed expression F(G(E)) remainstype-correct, even if G(E) is subject to computation. Sometimes, uniqueness is notrequired. If F : �� � � � � then still F(G(E)) is type correct. This is expressed in asubtype relation, such that roughly �� � ��. O�ering a non-unique argument if afunction requires a unique one fails: �� � ��. The subtype relation is de�ned in termsof the ordering � � � on attributes.Pattern matching is an essential aspect of term graph rewriting, causing a func-tion to have access to arguments via data paths instead of a single reference. This`deeper access' is taken into account by a restriction on the uniqueness types of dataconstructors. In the case of lists, e.g., one can distinguish uniqueness of the spine anduniqueness of the elements. If a function F has access to a list with non-unique spine, itcannot be expected that the list elements are unique for F: other functions may accessthem via the spine. Thus the type List�(Int�) does not make sense. Uniqueness of theelement type should `propagate' to uniqueness of the list type. This can be expressedusing the � relation: Lista(Intb) is correct i� a � b. Note that the variant List�(Int�)is indeed excluded since � � � . For the function type constructor ! there are nopropagation assumptions (it has no standard term constructors).In Barendsen and Smetsers (1993a), we described a currying mechanism for func-tions (involving a restriction on the subtyping relation w.r.t.! types). In this abstractwe refrain from going into this.Apart from the subtype relation, the non-unique (`conventional') and unique (`lin-ear') types are connected by a correction mechanism: a unique result may be usedmore than once, as long as only non-unique supertypes are required. Cyclic objects(with their inherent sharing) are treated separately by requiring the result type to benon-unique.We now give a more technical account. In order to denote uniqueness schemes, wereplace the concrete attributes with attribute labels (a; b; a1; : : :). Below, S; T; : : : rangeover labelled types. The outermost attribute of S is denoted by pSq.4

Uniqueness constraints are indicated by (�nite) sets of label inequalities. These canbe used to express the uniqueness propagation mentioned above. For example,Lista(Intb) j a � bdenotes the variants List�(Int�), List�(Int�) and List�(Int�). Also attribute equalitiescan be expressed: by a = b we abbreviate a � b, b � a. Concrete assignment can bedone by a = � or a = � respectively. E.g., adding b = � in the above example reducesthe variants to List�(Int�).Let � be a set of uniqueness constraints. We say that u � v is derivable from �(notation � `̀̀ u � v) if � `̀̀ u � v can be produced by the axioms� `̀̀ u � v if (u � v) 2 �;� `̀̀ u � u; � `̀̀ u � �; � `̀̀ � � uand rule � `̀̀ u � v � `̀̀ v � w� `̀̀ u � w :This denotation is extended to �nite sets of inequalities: � `̀̀ �0 if � `̀̀ u � v for each(u � v) 2 �0. We say that � is consistent if � 6̀`̀ � � � .The relation � is extended to types: the validity of S � S0 in � depends subtypewiseon the validity of � `̀̀ a � a0 and/or � `̀̀ a0 � a, with a; a0 attributes in S; S0. Asusual, the directions of these positionwise inequalities depends on the covariance andcontravariance of the type constructors. One has, for example,� `̀̀ Lista(Intb c! Boold) � Lista0(Intb0 c0! Boold0) i� � `̀̀ a � a0; c � c0; b0 � b; d � d0:By Con(S) we denote the set of uniqueness constraints expressing propagationrequirements (so-called internal consistency). For example (remember that ! has nopropagation requirements),Con(Lista(Intb c! Listd(Chare))) = fa � c; d � eg:In the typing system, we consider constraints which at least imply the internal con-sistency of the types in question. This will be made precise in the type assignmentrules.In order to account for multiple references to the same object we introduce a unique-ness correction: if an object has type S, then only non-unique versions of S may beused. Given S and �, we construct the minimal non-unique supertype (w.r.t. �) bSwith constraints b�. For Lista(Intb c! Boold) this givesListâ(Intb ĉ! Boold) j ba = �; bc = �:A uniqueness typing statement has the formB j � `̀̀E E : S j�where �;� contain uniqueness constraints for the types in B and S respectively. Theenvironment E now contains declarationsF : ~Sj�� T j�;5

where �;� are consistent attribute environments on the input types ~S and output typeT , with � `̀̀ Con(~S) and � `̀̀ Con(T).In our language, sharing appears as multiple occurrences of the same variable. Likein linear logic, we have to be precise when dealing with bases used for typing subterms:the denotation B1; B2 stands for a disjoint union of bases. Moreover, all (combinationsof) attribute environments are implicitly required to be consistent.The rules for type assignment are the following.� `̀̀ Con(S) (variable)x:S j � `̀̀E x : S j �Bi j �i `̀̀E Ei : Si j�i E `̀̀ F : ~S0j~�� T j�0 �i `̀̀ Si � S0i (application)~B j ~� `̀̀E F ~E : T j�0B1 j �1 `̀̀E E1 : S j�1 B2; x:S j �2;�1 `̀̀E E2 : T j�2 (sharing)B1; B2 j �1;�2 `̀̀E let x = E1 in E2 : T j�2B; x:S j � `̀̀E E : S j� � `̀̀ pSq = � (cycle)B j � `̀̀E �x[E] : S j�Additionally, we have the following `structural rules'. Weakening expresses that onecan discard (unique or non-unique) input. The contraction rule deals with correctionof types of shared objects: multiple use of the same object is allowed as long as onlynon-unique variants of the types are used.B j � `̀̀E E : T j� �;�0 `̀̀ Con(S) (weakening)B; x:S j �;�0 `̀̀E E : T j�B; y: bS; z: bS j �; b� `̀̀E E : T j� � `̀̀ Con(S) (contraction)B; x:S j � `̀̀E E[y := x; z := x] : T j�Instantiation of environment types proceeds in two steps: �rst, one may use amore restrictive attribute environment than the one speci�ed in E . Second, the typevariables may be replaced by concrete uniqueness types (with the same attribute) bysubstitutions [� := U j�], with � `̀̀ Con(U). (We assume that type variables are6

`uniformly labelled' throughout an environment type.)�0 `̀̀ �E ;F:~Sj�� T j� `̀̀ F : ~Sj�0� T j�0; DeltaE `̀̀ F : ~Sj�� T j�0 [� := U j�] substitutionE `̀̀ F : ~S[� := U]j�;�� T [� := U]j�0;�(In applications of these rules, the environments are minimized as follows. In the formerrule, only the `T -relevant' part of �0;� is taken. In the latter, the extension of �;�0with � is omitted if � does not occur in ~S; T respectively.)W.r.t. data symbols, the environment E contains labelled variants of the conven-tional types, supplied with propagation constraints. For example,Cons : (�b; Lista(�b))� Lista(�b) j a � b:Like in the conventional case, E should be consistent with the rewrite rules. Here, E issaid to be R-ok if for each rule F(A1; : : : ; Ak)! E;say with E containing F : ~Sj�� T j� there exist B;�0 such thatB j �0 `̀̀=E ~A : ~S j �; B j �0 `̀̀E E : T j�;where `̀̀=E denotes derivability via (variable) and (application), without coercions.Note that if the rule contains no patterns (F~x! E) the above conditions simplify to~x : ~S j � `̀̀E E : T j�:Also for uniqueness types, we prove that the subject reduction property holds.Moreover, there is a notion of principal uniqueness typing.5. Concluding RemarksWe have presented a restriction of Clean's uniqueness typing system in natural deduc-tion style. Several re�nements, such as higher-order functions and order-of-evaluationdependent reference analysis, will be formulated in this framework. The original sys-tems have been shown to be decidable in the sense that principal types can be de-termined e�ectively, see Barendsen and Smetsers (1993a) and (1994). The presentframework is likely to admit more direct proofs of these results. Finally, the relationwith the approach of Benton (1994) and others will be investigated.7

ReferencesAriola, Z.M. and J.W. Klop (1993). Equational term graph rewriting, Draft.Barendsen, E. and J.E.W. Smetsers (1993a). Conventional and uniqueness typing ingraph rewrite systems, Technical Report CSI-R9328 , Computing Science Institute,University of Nijmegen.Barendsen, E. and J.E.W. Smetsers (1993b). Conventional and uniqueness typing ingraph rewrite systems (extended abstract), in: R.K. Shyamasundar (ed.), Pro-ceedings of the 13th Conference on Foundations of Software Technology and The-oretical Computer Science, Bombay, India, Lecture Notes in Computer Science761, Springer-Verlag, Berlin, pp. 41{51.Barendsen, E. and J.E.W. Smetsers (1994). Uniqueness typing in theory and practice.To appear in: Proceedings PLILP'95.Benton, P.N. (1994). A mixed linear and non-linear logic: Proofs, terms and models,Technical Report 352 , Computer Laboratory, University of Cambridge.Guzm�an, J.C. and P. Hudak (1990). Single-threaded polymorphic lambda calculus,Proceedings of the 5th Annual Symposium on Logic in Computer Science, Philadel-phia, IEEE Computer Society Press, pp. 333{343.Wadler, P. (1990). Linear types can change the world!, Proceedings of the Work-ing Conference on Programming Concepts and Methods , Israel, North-Holland,Amsterdam, pp. 385{407.

8

