Guaranteeing Safe Destructive Updates
through a Type System with
Uniqueness Information for Graphs

Sjaak Smetsers, Erik Barendsen, Marko van Eekelen, Rinus Plasmeijer
University of Nijmegen*

Abstract

In this paper we present a type system for graph rewrite systems: uniqueness
typing. It employs usage information to deduce whether an object is ‘unique’ at
a certain moment, i.e. is only locally accessible. In a type of a function it can
be specified that the function requires a unique argument object. The correctness
of type assignment guarantees that no external access on the original object will
take place in the future. The presented type system is proven to be correct. We
illustrate the power of the system by defining an elegant quicksort algorithm that
performs the sorting in situ on the data structure.

1. Introduction

Some operations on complex data structures (such as arrays) cannot be implemented
efficiently without allowing a form of destructive updating. For convenience, we speak
about those functions as ‘destructively using’ their arguments. In case of graph-like
implementations of functional languages without any precautions, this destructive us-
age is dangerous: on the level of the underlying model of computation this appears
when arguments are shared between two functions.

However, in some specific cases destructive updates are safe, e.g. when it is known
that access on the original object is not necessary in the future. We call such an object
(locally) ‘unique’.

Sharing/update analysis is used to find spots where destructive updates are possible.
However, some functions require that a destructive update can be done in all contexts
in which the function is applied. Such updating functions are functions for file 1/0,
array manipulation, interfacing with existing FORTRAN or C libraries, window-based
I/O and functions that require an efficient storage management (e.g. in situ sorting
of a large data structure). This requirement can be explicitly specified via a type
system. This paper presents a type system related to linear types: uniqueness types.
The uniqueness type system is defined for graph rewrite systems. It employs usage
information to deduce whether the uniqueness attribute can be assigned to a type for a
subgraph. A type which has the uniqueness attribute is also called a unique type. For

*Department of Computer Science, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands, e-mail
sjakie@cs.kun.nl, fax +31.80.652525.

functions that require an object of unique type, the type system guarantees that no
external access on the original object will be possible anymore. So, (depending on the
use of the object in the function body) this information can be used to destructively
update the unique object. A compiler can exploit uniqueness types by generating
code that automatically updates unique arguments when possible. This has important
consequences for the time and space behaviour of functional programs. The type system
has been implemented for the lazy functional graph rewriting language Concurrent
Clean. So far, it has been used for the implementation of arrays and of an efficient
high-level library for screen and file I/O (see Achten et al. (1993)).

The structure of the paper is as follows: first graph rewrite systems are briefly
introduced using standard terminology (Section 2). Then, a notion of typing is de-
fined for graph rewrite systems in Section 3. Section 4 describes a use analysis that
provides important information that is necessary to assign uniqueness attributes. How
uniqueness attributes are assigned is defined in Section 5. The extension to algebraic
type definitions is given in Section 6. The correctness of the type system is proven in
Section 7. Section 8 illustrates how reasoning about programs with uniqueness types
can be done, after which Section 9 discusses related work.

2. Graph rewriting

Term graph rewrite systems were introduced in Barendregt et al. (1987). This section
summarizes some basic notions for (term) graph rewriting as presented in Barendsen
and Smetsers (1992).

Graphs

The objects of our interest are directed graphs in which each node has a specific label.
The number of outgoing edges of a node is determined by its label. In the sequel we
assume that A is some basic set of nodes (infinite; one usually takes N’ = N), and ¥ is
a (possibly infinite) set of symbols with arity in N.

2.1. DEFINITION. (i) A labeled graph (over (N, X)) is a triple
g9 = (N, symb, args)

such that

(1) N CN; N is the set of nodes of g;

(2) symb: N — X; symb(n) is the symbol at node n;

(3) args : N — N* such that length(args(n)) = arity (symb(n)).
Thus args(n) specifies the outgoing edges of n. The i-th component of args(n) is
denoted by args(n);.

(ii) A rooted graph is a quadruple

g = (N, symb, args,)
such that (N, symb, args) is a labeled graph, and » € N. The node r is called the root

of the graph g.
(iii) The collection of all finite rooted labeled graphs over (N, 3) is indicated by G.

CONVENTION. (i) m,n,n/,... range over nodes; g, ¢, h, ... range over (rooted) graphs.
ii) If g is a (rooted) graph, then its components are referred to as N,, symb
g g
(and ry) respectively.
iii) To simplify notation we usually write n € g instead of n € N,.
9

gs ATYS,

2.2. DEFINITION. (i) A path in a graph g is a sequence p = (ng, ig, 11,1, . . ., ng) where
ng,Nn1,...,Ng € g are nodes, and ig,41,...,7_1 € N are ‘edge specifications’ such that
ng+1 = args(ng);, for all k& < ¢. In this case p is said to be a path from ny to ny
(notation p : ng ~ ny).

(ii) Let m,n € g. m is reachable from n (notation n ~» m) if p : n ~ m for some
path p in g.

2.3. DEFINITION. Let g be a graph and n € g. The subgraph of g at n (notation g | n)
is the rooted graph (N, symb, args,n) where N = {m € g | n ~ m}, and symb and
args are the restrictions (to N) of symb, and args, respectively.

Graph rewriting

This section introduces some notation connected with graph rewriting. For a complete
operational description the reader is referred to the papers mentioned earlier.

Rewrite rules specify transformations of graphs. Each rewrite rule is represented
by a special graph containing two roots. These roots determine the left-hand side (the
pattern) and the right-hand side of the rule. Variables are represented by special ‘empty
nodes’. Let R be some rewrite rule. A graph g can be rewritten according to R if R
is applicable to g, i.e. the pattern of R matches g. A match i is a mapping from the
pattern of R to a subgraph of g that preserves the node structure. The combination
of a rule and a match is called a redez. If a redex has been determined, the graph
can be rewritten according to the structure of the right-hand side of the rule involved.
This is done in three steps. Firstly, the graph is eztended with an instance of the
right-hand side of the rule. The connections from the new part with the original graph
are determined by p. Then all references to the root of the redex are redirected to the
root of the right-hand side. Finally all unreachable nodes are removed by performing
garbage collection.

2.4. DEFINITION. Let 1 be aspecial symbol in ¥ with arity 0. Let g be a graph.
(i) The set of empty nodes of g (notation ¢g°) is the collection

9°={neg]|symby(n) = L}.

(ii) The set of non-empty nodes (or interior) of g is denoted by ¢g*. So Ny = g°Ug°.
(iii) g is closed if g° = 0.

The objects on which computations are performed are closed graphs; the others are
used as auxiliary objects, e.g. for defining graph rewrite rules.

2.5. DEFINITION. (i) A term graph rewrite rule (or rule for short) is a triple R =
(g9,1,7) where g is a (possibly open) graph, and [,r € g (called the left root and right
root of R), such that

(1) (gD #0;

(2) (917)° < (g]1)°.
(ii) If symby(l) = F then R is said to be a rule for F.
(iii) R is left-linear if g |1 is a tree.

Here condition (1) expresses that the left-hand side of the rewrite rule should not
be just a variable. Moreover condition (2) states that all variables occurring on the
right-hand side of the rule should also occur on the left-hand side.

NoTATION. We will write R|I, R|r for gg | lr, gr | Tr respectively.

2.6. DEFINITION. Let p,g be graphs. A match is a function p : N, — N, such that for
all n € p*

Symbg(:u(n)) = Symbp(n)a
orgsy ()i = m(args,(n))

In this case we write 4 : p = g.

2.7. DEFINITION. Let g be a graph, and R a set of rewrite rules.
(i) An R-redex in g (or just redex) is a tuple A = (R,u) where R € R, and
pi (R 2 g
(i) If ¢’ is the result of rewriting redex A in g this will be denoted by g % g, or
just g = ¢
(iii) Let A = (R, u) be a redex. The redez root of A (notation r(A)) is defined by

r(A) = p(rr) ifrreR|I,

= TR otherwise.

Term graph rewrite systems

A collection of graphs and a set of rewrite rules can be combined into a (term) graph
rewrite system. A special class of so-called orthogonal graph rewrite systems is the
subject of further investigations.

2.8. DEFINITION. (i) A term graph rewrite system (TGRS) is a tuple S = (G, R) where
R is a set of rewrite rules, and G C G is a set of closed graphs which is closed under
R-reduction.

(ii) S is left-linear if each R € R is left-linear.

(iii) S is regular if for each g € G the R-redexes in g are pairwise disjoint.

(iv) S is orthogonal if S is both left-linear and regular.

It can be shown that for a large class of orthogonal TGRSs (the so-called inter-
ference-free systems) the Church-Rosser property holds (see Barendsen and Smetsers
(1992)).

NoOTATION. Let § = (G, R) be a TGRS. X5 denotes symbols in ¥ that appear in G
or in R. The set of function symbols of S (notation X x) are those symbols for which
there exist a rule in R. Moreover, ¥p = £s\X £ denotes the set of data symbols of S.

3. Typing graphs

In this section we will define a notion of simple type assignment to graphs using a
type system based on traditional systems for functional languages. The approach is
similar to the one introduced in Bakel et al. (1992). It is meant to illustrate the concept
of ‘classical’ typing for graphs. In the next section a different typing system will be
described.

3.1. DEFINITION. Let V be a set of type variables, and C a set of type constructors
with arity in N. Write C = C°UC' U.... such that each S € C' has arity i.
(i) The set T of (graph) types is defined inductively as follows.

aeV = a«aeT,
CeCko,...,opeT = Cloy,...,04) €T,
o,teT = o—=717€T.

(ii) The set Tg of symbol types is defined as

ceT = o0€Tyg,
o1y 05, TET = (01,...,01) = 7€ Ts.

The arity of a symbol type is 0 if it is introduced by the first rule. Otherwise, the arity
is k.

CONVENTION. In the sequel, «, (3, ay,... range over type variables; o, 7, 7(,... range
over (function) types.

3.2. DEFINITION. (i) A substitution is a function *: V — T.
(ii) Let * be a substitution, and o € Tg. The result of applying * to o (notation o*)
is inductively defined as follows.

o = x(a),
(Clo1y...,01))" = C(of,...,0%),
(c—=7)" = o"=>71",
((o1,...,01) = T1)" = (0},...,08) = T".

(iii) o is an instance of 7 (notation o C 7) if there exists a substitution * such that
T = 0.

(iv) o and 7 are isomorphic if 7" = o and 0*2 = 7 for some substitutions *, *o.
We will usually identify isomorphic types, i.e. types that result from each other by

consistent renaming of type variables. That is, we regard types as type schemes.

Applicative graph rewrite systems

In TGRS’s symbols have a fixed arity. Consequently, it is impossible to use functions
as arguments or to yield functions as a result. However, higher order functions can
be modeled in TGRS’s by associating to each symbol S with arity(S) > 1 a 0O-ary

constructor Sg, and by adding a special apply rule (with function symbol Ap) to the
TGRS for supplying these new constructors with arguments.
For example, Combinatory Logic (CL) expressed by

Szyz — xzz(yz)
Ky — =z
Iz — =z

can be modeled in the following TGRS (using a self-explanatory linear notation).

S(z,y,2) — Ap(Ap(z,2),Ap(y,2))
K(z,y) — =z
I(z) — =z
Ap(Ap(Ap(So.2),y),2) — S(z,y,2)
Ap(Ap(Ko.7),y) — K(z,y)
Ap(Ip,z) — I(xz)

Note that each new constructor symbol introduces a new rule for Ap.

3.3. DEFINITION. Let S = (G, R) be a TGRS.

(i) Let S € Xs with arity > 1. The above symbol Sg € Xp is called the Curry
variant of S.

(ii) The set X¢ C Xp denotes the set of Curry variants of ¥p with arity > 1.

(iii) We say that S is Curry complete if R contains an Ap-rule for each symbol S
with arity > 1, as described above, and no other Ap-rules.

(iv) Let R € R. The principal node of R (notation p(R) is lp if symb(lr) # Ap;
otherwise it is the node containing Sp.

ASSUMPTION. From now on we assume that all TGRS’s are Curry complete.

Assigning types to symbols

In the rest of this section we describe how types can be assigned to graphs given a fixed
type assignment to the (function and data) symbols by a so called environment.

Currying imposes a restriction on type environments, that is to say, the type of
a Curry variant Sg should be related to the type assigned to S. We also assume a
standard type for the symbol Ap to be declared.

3.4. DEFINITION. (i) Let o = (01,...,0,)— 7 be a function type. The curried version

of o (notation o) is

o =012 (0g= (- (op = 7)-)).

(ii) A (type) environment for S is a function € : £¥g — T such that
(1) &(L) = a,

(2) £(AP) = (a = f.a) = 4.

(3) £(So) = (£(8))°.

Algebraic data types

We consider new (basic) types to be introduced by so-called algebraic type definitions.
In these type definitions a (possibly infinite) set of constructor symbols is associated
with each new type T'.

The general form of an algebraic type definition for T is

Ta = Ciol
= Cy0y

Here @ € V, and ¢; € T such that the variables appearing in ¢; are contained in &.
Moreover, we assume that each Cj is a fresh constructor symbol. E.g., the type of lists
could be obtained as follows.

List(a) = Cons(a, List(a))
= Nil

A set A of algebraic type definitions induces a type environment &4 for all con-
structors introduced by A. More specifically, Let C; be the i*" constructor defined by
some algebraic type T'. The €4 type of C; is

E4(Cy) = 6, > Ta.

CONVENTION. Let A be a set of type definitions. ¥ 4 denotes the constructor symbols
that are defined via some definition in A.

ASSUMPTION. In the sequel we will assume that all constructors in S that are not the
curried variant of some other symbol, are introduced by an algebraic type definition
(i.e. p\Ee C 2 4.)

Assigning types to graphs

3.5. DEFINITION. Let g = (N, symb, args) be a graph.
(i) A type assignment to g (or g-typing) is a function 7 : N — T.
(ii) Let 7 be a g-typing, and n € g. The function type of n according to 7 (notation
Fr(n)) is defined as
Fr(n) = (T(n1),...,T(m)) = T(n)

where [= arity(symb(n)), and n; = args(n);.
(iii) Let £ be an environment. 7 is a g-typing according to £ if for each n € g there
exists a substitution * such that

Fr(n) = E(symb(n))*.

3.6. EXaAMPLE. Let £ be an environment containing the following type declarations.

F . List(8) = 6,

Cons : (a,List(a)) — List(a),
Nil : List(«a),

3 : INT.

Below, a graph and its typing according to £ are indicated.

F:INT

l

Cons : List(INT)

/

3:INT Nil: List(INT)

3.7. DEFINITION. Let S = (G, R) be a TGRS, and A a set of algebraic type definitions.
Furthermore, let £ be an environment for S .

(i) R € R is typable according to &£ if there exist an gr-typing 7 (according to &)
that meets the following requirements.

(1) 7)) =T(r).

(2) Fr(p(R)) = E(symb(p(R))).

(ii) R is typable if there exists an environment £ extending &€ 4 such that each R € R
is typable according to £.

Condition (2) states that the left root node should be typed exactly with the type
assigned to the root symbol by the environment. This contrasts the requirement for
applicative occurrences of the function symbol.

Notice that the latter condition also provides that the abovementioned way of typing
rewrite rules is essentially the same as the Mycroft type assignment system for the
lambda calculus, see Mycroft (1981). A Milner-like type assignment system (see Milner
(1978)) can be obtained by stating this condition for all occurrences of a symbol F in
the rule for F.

It is possible to formulate conditions under which typing is preserved during reduc-
tion; cf. Bakel et al. (1992). We will not go into this here.

4. Usage analysis

A first approach to a classification of ‘unique’ access to nodes in a graph is to count the
references to each node. In practice, however, a more refined analysis is often possible.
This can be achieved by taking into account the specific evaluation order dictated by
a specific reduction strategy. E.g. the standard evaluation of a conditional statement

If ¢ Thent Else e

causes first the evaluation of the ¢ part, and subsequently evaluation of either ¢ or e,
but not both. Hence, a single access to a node n in ¢ combined with a single access to
n in e would overall still result in a ‘unique’ access to n. It is important to note that
this property only holds if execution proceeds according to the chosen strategy; it may
be disturbed if one allows reduction of arbitrary redexes.

We consider the following classification of function arguments.

AssuMPTION. Let S be a TGRS.
(i) Let F € Xz, say with arity [. Assume that {1,...,[} is divided into £+ 1 disjoint
‘argument classes’
P Ay, ..., A

(ii) Arguments of each constructor C € Xp belong to one single class A.

The intended meaning is that arguments occurring in P are evaluated before any
other argument (‘preliminaries’) whereas Aj,..., Ay are groups of ‘alternate argu-
ments’: during the actual evaluation, arguments belonging to different groups are never
evaluated both. Furthermore, it is assumed that references via preliminaries to the
graph are released before the graph is accessed via one of the alternate arguments.

4.1. REMARK. We assume that the argument classification is consistent with each
reduction rule, i.e. the way the arguments of a left-hand side are passed to functions
in the corresponding right-hand side does not conflict with the respective argument
classifications.

We will now describe a ‘weighted reference count’ analysis based on the above
argument classification. First the argument dependency of functions is translated into
dependency relations on nodes in graphs.

4.2. DEFINITION. (i) For each symbol S as above, and i,j < [, write i ~g j if 7,7
belong to the same argument class of S. Moreover, i <ig j if i € P and j ¢ P.

(ii) Let g € G. For convenience this denotation is extended to paths in g starting
with the same node. ILe.

(n,i,m,...) ~ (n,j,m', L) S ~symb,(n) Js
and
(n,i,m,...) < (n,5,m',...) & i Lsymb, (n) J-

4.3. DEFINITION. Let g € G, and n,n’ € g.
(i) Let p,p" be paths in g. Then n,n' are joined by p,p' (notation p A p') if

n,n
p:m~mn,p :m~>n' for some m, and p,p’ are disjoint (discarding the first node).
(ii) The relations ~ and < on N, are defined by
n~n' & p~p forsomep A p,
n,n

n<dn' & p<p forsomep A p'.

n,n’'

Intuitively, n < n’ indicates that n might be accessed before n’. Moreover n ~ n'
indicates that n and n’ appear in a common argument class of a function and thus
might be accessed in any order.

Each reference (‘arc’) in a graph is labeled with a so-called use attribute.

4.4. DEFINITION. The set of use attributes is
U= {®a ®}

To get some intuition for these use attributes it is convenient to consider the objects
that are accessed via a reference attributed with ® as being ‘local’ and therefore allowed
to be used destructively, whereas objects accessed via other references must remain
unaffected. Hence, one could say that the symbol ® stands for ‘write access’; ® for
‘read access’. The simple approach using reference counts would place a ® at arcs
pointing to a node with in-degree 1, and ® otherwise. A more refined approach is
described below.

4.5. DEFINITION. Let g € G, and n € g. The set of accesses of n (notation acc(n)) is
ace(n) = {(m,) | argsy(m); = n}.

4.6. DEFINITION. Let g € G. The arcs of g are annotated by the function use : N— U*
with length(use(n)) = arity(symb(n)), defined as follows. Let n € g. Say acc(n) =
{(mlail)a ce (mlail)}' Then

use(mg)i, = & if mg ~ my or my < my for some k',

= (O otherwise.

Note that this definition completely specifies the function use.

4.7. ExaMPLE. Using the standard classification of arguments of the conditional IF,
and no specific assumptions about other symbols, the following use-assignments are
made.

IF IF

® @i)c 1/ gi)@
G H G H
N sl
C C

Now we can formulate which redexes are allowed to be contracted, in terms of the
use function.

4.8. DEFINITION. (i) Let g € G, and m,n € g. Then m is local for n (in g) if
Vp:rg~m [n € pl.
(ii) Let A = (R, u) be a redex in g. We say that A is applicable if for all 4
useg(p(l))i = © = args,(u(l)); is local for u(l).

The intention is that at least the redexes chosen by the strategy are applicable.

5. Uniqueness typing

Uniqueness types

The use analysis described so far only takes the reduction strategy into account; not the
particular structure of the rewrite rules. The use attributes of arguments may change
during reduction, e.g. the ® attribute of a certain argument may change into a ® after
is redex has been contracted.

However, for a function F' that destructively uses one of its arguments it should be
guaranteed that at the moment F' is evaluated the argument has a ® attribute. One
way to ensure this is to require that this property holds at the moment the application
of F' is built and that is remains valid during reduction.

The aim of the rest of this paper is to present a ‘type system’ in which the above-
mentioned analysis can be performed.

10

The fact that a function may use one or more of its arguments destructively is
expressed in its ‘uniqueness type’. The syntax of these types is given in the following
definition.

5.1. DEFINITION. (i) The set U of uniqueness types is defined inductively by

«.x €0,
u,velU = uiH)E[U,
u—sveU

(ii) The set U* of unique types is defined by
U* ={ueU|u= e oru=uv—w for some v,w € U}.

Moreover, U* = U\U°.
(iii) The set Ug of uniqueness symbol types is defined as

uelU = u€eUg,
Uty ug, v €U = (ug,...,ux) = v € Us.

The constants ¢ and X represent ‘unique use’ and ‘potentially multiple use’ re-
spectively. The arrows are annotated to distinguish unique function objects from
unique objects without specified structure, and nonunique function objects from general
nonunique objects. In the following example this will be illustrated.

5.2. EXAMPLE. Suppose Upd denotes a binary function which destructively updates
its first argument with its second argument. So, the intended U-type of Upd is some-
thing of the form (», x)—wu. It is natural to require that the uniqueness of the updated
object is propagated. Thus one arrives at the following type for Upd.

Upd: (¢, x)— o

A partial application of Upd to some unique expression g results in a function Ap(Updy, g)
that may not be copied. For, if copying would be allowed, then each of the applications

of a copy of the function would be allowed to update the first argument g destructively,

as is illustrated by the expression G(Ap(Updy, g), h) assuming the rule

G(f,z) — Pair(Ap(f,z), Ap(f,z)),
which is obviously unwanted.

In our type system the U-type of the above expression Ap(Updg, g) will be x g
which will prevent it from being copied.

However, in any context in which a nonunique nonfunctional U-type is expected it
is harmless to offer a unique object. This gives rise to a subtype hierarchy specifying
which types are convertible (can be coerced) to other types. These coercions are defined
as an ordering on U. They are not only depending on the demanded and offered types
of the context but also on the way the offered object is accessed. If the use information
of graphs is not taken into account, some graphs are wrongly accepted. For this reason
we define a coercion relation that also depends on the use value of the reference via
which the corresponding part of the graph is accessed.

11

5.3. DEFINITION. The orderings <® and <% on U are defined as follows.
(i) Coercions via ®-references are generated by

[] []
u <P ug, 1 <P vy = ug = w1 <€ uyp — vy,

X X,
U9 — V1 SG Uy — V2.
(ii) Coercions via @-references are the following.

x <® x
.S®X

3

3

X X
Ul SQ U9, U1 SQ V9 = U2 — V1 §® U1 — V9.

Since we do not have type variables the notion of type instance has to be adjusted
slightly. Intuitively, a type w is an instance of a type v if u has ‘more structure’ than
v. This is made precise in the following definition.

5.4. DEFINITION. The relation C on U is defined as:

e C o, u—=vC o
X
x Cx, u—=>vC X,
[] []
up Cug,v1 Cva = up — v € uz — vy,

X X
u; — v; C ug = va.

If u C v we say that u is an (U-type) instance of v.

Currying

As we have seen, in some cases it can be dangerous to copy references to functions. To
prevent a ‘dangerous’ function from being copied it is distinguished from ‘safe’ functions
by typing it with an arrow type supplied with a « attribute. The observation that once
a symbol has been applied to a unique argument it may not be copied anymore (see
example 5.2) leads to the following Currying rule.

5.5. DEFINITION. (i) Let w € U. The uniqueness attribute of u (notation [u] is defined
as follows.

[u] = o, fuelU®
= x, ifugU".
(ii) For @ = (u1,...,u;) and j < k the cumulative uniqueness attribute up to j
(notation [u];) is defined by
[d]; = e if [u;] = » for some i < 7,
= X otherwise.

12

(iii) Let u = (u1,...,ux) = v. The set of curried versions of u (notation u€) is

(i

[y et gy,

C={ uy S (ug = - (uy
] (2]

wr s (un B (g T)))

The effect of applying a (possibly curried) function to a unique argument is that
the result of the application itself becomes unique. One could say that uniqueness
information ‘propagates upwards’.

The correspondence between a symbol (with arity > 1) and its Curry variant is
given by that Ap rule. In contrast to the (ordinary) type system presented in section
3, Ap can be used with different U which are not instances of one type. To make such
‘generic’ functions possible we allow the type environment to contain more than one
type for each symbol.

5.6. DEFINITION. An (applicative) uniqueness type environment is a function & : 3 —
©(U) such that
x},

(1) E(L) ={-,
={

(2) £(Ap) (xi>><,><)—>><, (oi>><,o)—>><,
(XS o, X))o, (¢ e,0)> o,
(><—> ,X) = X, (oi>><,o)—>><,
(X2 o,x) o, (o3 e,0)= 0}

(3) £(So) C (£(8)).
Here A¢ = {a€ | a € A}.

Assigning uniqueness types to graphs

Assigning U-types to graphs can be done in two ways. The first way is comparable
to standard type assignment (section 3). In the second way, the use attributes of the
graph as well as coercions are taken into account.

5.7. DEFINITION. Let g = (N, symb, args) be a graph, and £ be an environment. Fur-
thermore, let I/ : N — U.
(i) Let n € g. The function type of n (notation Fy(n)) is

Fu(n) = Uny), ..., Uny)) = U(n),

where [= arity(symb(n)), and n; = args(n);.
(ii) U is an uniqueness typing for g according to & if for each n € g there exists
u € E(symb(n)) such that

Fu(n) Cu

(iii) Let use be the function that supplies g with use attributes. U is an weighted
uniqueness typing for g according to & if for each n € g there exist u € £(symb(n)) and
v1,...,0; € U such that

U(n;) <" vy,
('Ula s 7Uk) —>U(’fl) C u,

where n; = args(n);, and u; = use(n); for i < k = arity(symb(n)).

13

(iv) If U is a (weighted) uniqueness typing for g, then the type of g (notation U(g))
is simply U(ry).

5.8. DEFINITION. Let S = (G, R) be a TGRS, and A a set of algebraic type definitions.
Furthermore, let £ be an environment.
(i) R € R is uniqueness-typable (according to &) if for each u € E(symb(l)) there

exist a function U : gp — U such that
(1) U is a uniqueness typing for R |,
(2) Uisa welghted uniqueness typing for R | r,
(3) U(r) < u(l),
(4) Fu(p(R)) = u.
Such an U is called a uniqueness typing for R.

(ii) R is uniqueness-typable if there exists an environment £ extending € 4, such that
each R € R is uniqueness-typable according to £.

(iii) S is uniqueness-typable if there exists an uniqueness type environment £ extend-
ing £4 such that each R € R as well as each g € G is uniqueness-typable according to
E.

6. Algebraic type definitions

Since one allows pattern matching in function definitions, it is sometimes wrongly
concluded that part of a pattern is unique. This appears e.g. in the following example,
taking ¢ — X for the constructor C and x — « for F with rule F(C(z)) — z.

D

N

F

/

o< Q

For this reason we require that (data) symbols appearing in a pattern of a rewrite rule
also obey an ‘upward propagation’ rule, that is to say, if such a symbol expects one or
more unique arguments the application itself is unique. E.g. in the above example C
should be typed with « — . rejecting the given F-type.

Since the only symbols appearing in function patterns are constructors introduced
by some algebraic type definition, the upward propagation requirement is obtained by
making following assumption.

ASSUMPTION. Let C € ¥p with uniqueness type (uy,...,ug) — v. Then
u; €U° forsomei<k = veU"*

Consequently, a data object can only contain unique subparts if the object itself is
unique. The fact that a symbol may have more than one environment type is also very

14

useful for constructors. Remember, for example, the following algebraic type definition
for lists.

List(a) = Cons(a, List(a))
= Nil

A list of which the ‘spine’ is unique can be obtained by typing Cons by
Cons: (x,s) — ».

A list with unique elements can be specified by assuming
Cons:(e,¢)— ».

Notice that, because of the propagation rule, the uniqueness of elements implies the
uniqueness of the spine.

Allowing both types for Cons simultaneously in the present type system may cause
type conflicts. E.g. in the rule

F(Cons(z,y)) — x,

F can be typed with « — «. This is wrong, as is illustrated by the following application
of F.

F
Cons
N
Cons
Y\
H Nil

One way to solve this problem is to distinguish the different types of the constructors
by introducing uniqueness type constructors. We only give an example.

6.1. EXAMPLE. In the extended system, Cons can be typed as follows.
Cons : (+,List(*))— List(e),
Cons : (x,List(x))— List(x).
Then, a spine-unique list is typed with List(x) whereas the list containing also unique

elements is typed with List().

This extension will not be elaborated here. However, to prevent incorrect type
assignments we make the following assumption about type environments.

ASSUMPTION. If £ is a uniqueness type environment, then the constructor types are
chosen in such a way that the type conflicts mentioned above cannot occur.

15

7. Correctness

In order to show that uniqueness typing is preserved during reduction, some analysis
with respect to the use function is needed. We focus on the relation between the
uniqueness typing of a rewrite rule and the usage information of a graph before and
after applying this rewrite rule. We will merely give an outline of the proof. The details
will appear separately.

Fix an orthogonal TGRS S = (G, R).

7.1. DEFINITION. Let A = (R, u) be a redex in g.
(i) Let U : R—U. A is U-type correct if U is a uniqueness typing for R according
to &£, and for each n € R| 1, n # 1 (say n = args(m);) one has

Un) eU" = usey(u(m)); = O.
(ii) A is type correct if A is U-type correct for some U.

Note that the definition of ‘applicable’ (see 4.8) formulates a locality condition for
the direct arguments of u(l) only. The following result extends this property to all
nodes in the matching fragment of the graph.

7.2. LEMMA. Let A be applicable and U-type correct. Then for alln € (R|1)N(R|r)
with n # [one has
Un) e U* = n is local for u(l).

PRrROOF. For ‘ordinary’ reduction rules, this follows from the propagation criterion for
constructors and regularity of S. For Ap reduction rules, the specific form of curry
types and the predefined types for Ap imply the result. [J

7.3. LEMMA. Let m,n € g with (m,i) € accy(n). Suppose n is on a cycle not contain-
ing m. Then useg(m); = ®.

PrOOF. Examine the definition of use. O

A
7.4. PROPOSITION. Let A = (R, 1) be applicable in g. Say g > h. Suppose A is U-type
correct, with U(r) € U* . Then

acen(x(A)) C acey((l)).

PROOF (Sketch). By the following case distinction.

Case 1. r(A) ¢ p(R|1). Then r(A) is fresh in h, so accy(r(A)) = accq(p(l)) after
redirection.

Case 2. r(A) = pu(n), n € u(R|1). Since U(n) € U* it follows by type correctness
and lemma 7.2 that p(n) is local for u(1). Hence pu(l) ~ m for every (m, i) € accgy(pu(n)).
Now let (m,i) € accy(pu(n)). We want to show that m is not present in h. If m €
(R | 1) this is easily seen. Otherwise, if m would be present in h (after redirection
and garbage collection), then p(n) ~» m (~ p(n)). Hence usey(u(m')); = @ for any
(m',i) € accr(n), by lemma 7.3, contradicting type correctness of A. Taking the effect
of redirection into account it follows that accp(p(n)) C accy(p(l)). O

16

A
7.5. PROPOSITION. Let A be applicable and U-type correct in g; say g > h.
(i) Suppose U(r) € U* . Then for all (m,i) € accy(u(l)) such that m is present in
h one has
useg(m); = © = usep(m); = O.
(ii) Let n € R|r with n #r. Suppose U(n) € U*. Then for all (m,i) € accr(n)
user(m); = © = usep(m); = O,
where m denotes the h-node corresponding to m.
PROOF (Sketch). (i) Suppose usey(m); = ©. By proposition 7.4 we only have to con-
sider accy(m) to determine usep(m);. If p /\ P’ in h causing usep(m); = ®, then a

redirection ‘above’ p(l) has taken place. This can only occur if u(l) is on a cycle in g,
contradicting lemma 7.3.

(ii) By a case distinction, distinguishing the possible positions of n, m. Lemma 7.2
is used in the case n € R|land m ¢ R|I. O

7.6. PROPOSITION. Let A be applicable in g; say g % h. Let n € g such that n ¢
p(R|1), and n € h. Then for all (m,i) € accy(n) with m present in h one has

useg(m); = ® = usep(m); = O.

PROOF (Sketch). Suppose, towards a contradiction, usey(m); = ® but usep(m); = ®.

Suppose this is caused by m/, i.e. (m',7') € accy,(m) such that m ~ m' or m < m’, say

p A p' withp~ p' or p < p'. Since this situation does not occur in g, these parts
m,m

contain new nodes or new arcs. Distinguish two cases. If r(A) ¢ p,p’ one arrives at
a conflict with the argument classification (cf. remark 4.1). Assuming, on the other
hand, r(A) € p or r(A) € p’ leads to a contradiction with usey(m); = ©. O

For reduction on uniqueness-typed graphs, the above results imply a ‘subject re-
duction’ result: typing remains correct when reducing applicable redexes.

7.7. LEMMA. Let g € G. Suppose g is uniqueness-typable. If A is applicable, then A
18 type correct.

PRroOF. Obvious. O
7.8. LEMMA. (i) Let u,v,w € U. Then
u§®v, v<®w = u<®w
(ii) Let u,v,v" € U. Suppose u <® v and v' C v. Then there exists ' € U with

u Cu and u' <© ¢

7.9. THEOREM. Suppose R is uniqueness-typable according to €. LetU be a uniqueness

A
typing for g (according to £). Furthermore, let g — h with A applicable. Then there
exists a uniqueness typing U' for h such that U'(h) = U(g).

PROOF. U can be extended to a uniqueness typing of i by defining it on the new nodes
according to the type assignment to A (proposition 7.5 (ii)). The type assigned to the
other nodes remains correct, as follows from propositions 7.5 (i, ii), 7.6 and lemma 7.8,
by distinguishing the different kinds of nodes in h. [

17

8. Reasoning about programs with uniqueness types

Uniqueness types can be used in several contexts. When one wants to interface func-
tional languages with imperative programs, one can assign a unique type to those
arguments that are destructively updated by the imperative function. In this way
file I/O and array updating can be incorporated without loosing the referential trans-
parency. With these applications in mind it may seem that the destructive behaviour
of the function has to be explicitly programmed using a non-functional programming
language. However, it is of course also possible for a compiler to generate destructive
updates for pure functions defined in the functional language itself. This is of great
importance for improving the time-space behaviour of functional programs.

Below an example is given in a functional programming language of which it is
assumed that uniqueness types are assigned on the underlying graph rewrite system
(which can be derived directly from the program by removing some syntactical sugar).
The language uses underlining to indicate that a type has the uniqueness attribute o .
[] in a type denotes the List type. [] in a rule denotes the Nil element and [a|b]
denotes Consab. (,...,) denotes standard tupling. So, [T] denotes a list of type T
with a unique spine. -

qgs m%m

gs [] [

gs [hd | tl] = (qs left) ++ [hd | gs right]
where
(left, right) = split tl hd

split = [T]=>T—>(TLIT))

split [] p =0
split [hd | tl] p ([hd | left], right), if p > hd
= (left, [hd | right])
where
(left, right) = split tl p

Compared with the imperative quick-sort algorithm the functionally written quick-
sort algorithm gs has the disadvantage that the split function has to construct new lists
for its result. Now, if the function split would be defined on a spine-unique list, the
construction of the new cons nodes could be done by updating the old ones. Looking at
the actual difference between the old cons node given as an argument to split ([hd | tl])
and the new cons node to be constructed (either [hd | left] or [hd | right]) it can be
deduced that only the tail of the cons node has to be updated. This means that the
split function does not create new cons nodes at all but is actually rearranging tail
pointers in such a way that the ordered list is obtained. Such in situ updating is
essential to be able to handle large data structures efficiently.

With respect to the updating the run-time behaviour of the functional program can
be similar to its imperative counterpart. However, the specified program will require
a relatively large recursion stack. Both split and gs can be transformed to a tail
recursive version using program transformations that also eliminate the construction
of intermediate data structures. Tail recursion is usually translated into a loop on
the machine code level. The applied transformation maintains the uniqueness of the
types. So, for the resulting elegant functional program a compiler can generate code

18

that is as efficient as the code for an imperatively written quick-sort algorithm. Hence,
this example shows that uniqueness types solve one of the challenges set at the 1990
Dagstuhl seminar on functional languages (Johnsson (1990)).

s [T]=[T]—=[T]

gs [] tail = tail

gs [hd | tl] tail gs left [hd | gs right tail]
where
(left, right) = split tlhd [] []

split : [T]=>T—=[T]=>[T]=>(TLIT)
split [] p left right = (left, right)
split [hd | tl] p left right = split tl p [hd | left] right, if p > hd

split tl p left [hd | right]

The reasoning about the programs above implicitly made certain assumptions about
the generated code. It was assumed that updating was actually done whenever this
was possible. More specifically, it was assumed that updates could actually take place
for all objects of the same type. Using only such very general kinds of assumptions
and the uniqueness type information the storage behaviour of the functional program
was deduced and improved by a program transformation. It is important that these
assumptions are further formalised. Any compiler should obey the resulting formal
rules such that reasoning about the time and space behaviour of a functional program
is independent of a specific compiler. The programmer then can deduce whether or not
it is worthwhile to use uniqueness types for those cases where the efficiency of the time-
space behaviour is critical. It seems that such reasoning is relatively simple and can be
applied successfully to design time and space efficient purely functional programs for
many kinds of real-life applications.

9. Related work

The update problem is also addressed (using linear types) in Wadler (n.d.) and Guzman
and Hudak (1991). Both papers use lambda calculus as basic model hence requiring
a more indirect kind of analysis. With the proposed approach in this paper graphs
are used directly as the objects of consideration. The presented system for unique-
ness types incorporates a solution to several of the questions raised in Wadler (n.d.).
Uniqueness types are in a sense orthogonal to the standard type systems for functional
languages. The uniqueness type system has been used successfully to support high
level I/O and efficient array handling. Experience with uniqueness types has shown an
important change in the use of functional languages from academic exercises to real-
life programming (ranging from a window-based text editor to a relational database).
The use function presented in Section 4 has been inspired by the analysis presented
for poly-lamg in Guzman and Hudak (1991) which is geared towards efficient array
manipulation. They use Wadsworth’s shared lambda calculus involving partly copying
of lambda terms when functions are shared. In a certain sense the proposed unique-
ness types are a generalisation of their single-threadedness analysis to a general graph
rewriting context.

19

References

Achten, P.M., J.H.G. van Groningen and M.J. Plasmeijer (1993). High level specifica-
tion of i/o in functional languages, Proc. of International Workshop on Functional
Languages, Glasgow, UK, Springer Verlag,.

Bakel, S, van, S. Smetsers and S. Brock (1992). Partial type assignment in left-linear
term rewriting systems, Proc. of 17th Collogium on Trees and Algebra in Program-
ming (CAAP’92), Rennes, France, Springer Verlag, LNCS 581, pp. 300-322.

Barendregt, H.P., M.C.J.D. van Eekelen, J.R.W. Glauert, J.R. Kennaway, M.J. Plas-
meijer and M.R. Sleep (1987). Term graph reduction, Proc. of Parallel Archi-
tectures and Languages Europe (PARLE), Eindhoven, The Netherlands, Springer
Verlag, LNCS 259 TI, pp. 141-158.

Barendsen, Erik and Sjaak Smetsers (1992). Graph rewriting and copying, Technical
Report 92-20, University of Nijmegen.

Guzmén, Juan C. and Paul. Hudak (1991). Single-threaded polymorphic lambda calcu-
lus, Proc. of Logic in Computer Science (LICS’90), Phildelphia, IEEE Computer
Society Press,, pp. 333-345.

Johnsson, Thomas. (1990). Discussion summary: which analysis?, Proc. of Functional
Languages: Optimization For Parallelism, Dagstuhl, Germany, Dagstuhl seminar,

pp- 4-5.

Milner, R.A. (1978). Theory of type polymorphism in programming, Journal of Com-
puter and System Sciences.

Myecroft, A. (1981). Abstract interpretation and optimising transformations for applica-
tive programs, Dissertation, University of Edinburgh.

Wadler, P. (n.d.). Linear types can change the world!, Proc. of Working Conference
on Programming Concepts and Methods.

20

