Some implementation aspects of Concurrent Clean
on distributed memory architectures.

John H. G. van Groningen

Faculty of Mathematics and Computer Science,
University of Nijmegen,
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
E-mail: johnvg@cs.kun.nl

October 1992

Abstract.

We have implemented a code generator and runtime system that can be used to
simulate parallel execution of Concurrent Clean programs on a single Macintosh
computer. This code generator generates machine code and is an extension of the
(sequential) ABC code generator for the MC680x0 and SPARC processors.

This implementation is discussed briefly. The largest part of the paper describes two
aspects of the implementation in detail. The first one is how to let a process wait until

a node is overwritten with its head normal form. Several possible solutions are
described. The other one is a description of an efficient graph copying algorithm. This
graph copying algorithm can be used to send graphs to remote processors using a
more compact representation. Finally some results are presented.

I ntroduction.

We have made an implementation of Concurrent Clean that can be used to simulate
parallel execution on a single Macintosh computer. Concurrent Clean is an
experimental lazy functional programming language (Brus (1987), Nocker et al.
(1991)). This simulation is not done using an interpreter, but by generating efficient
machine code and simulating several processors on one machine.

To simulate Concurrent Clean programs, they are first compiled to (P)ABC code
(Smetsers (1989), Koopman et al. (1990)). The resulting code is then translated by the
code generator to machine code. This code generator is based on the (sequential) code
generator for the MC680x0 and SPARC processors (Groningen (1990)). This
implementation will be extended to be able to execute parallel programs on several
Macintosh (or SPARC) computers connected to an ethernet network. Currently, it is
already possible to do this, but only with two Macintosh computers. And it has not
been tested yet on an ethernet network, but only on a (slow) local talk network.

Below we will give a brief description of the current implementation (the simulator,

not the parallel implementation, which is the same except for the runtime system):

- The cale generated is very similar to the code generated for sequential
programs, except for what is discussed below. The node representation is the
same (Groningen et al. (1991)).

- Stacks are checked for overflows, and if necessary enlarged by copying the
stack to a larger memory block.

- Every process has two stacks. The PABC machine has 3 stacks, but the code
generator has been changed, so that it can merge the B (basic) stack and the C
(control) stack. This has been done to implement checking for stack overflows
more efficiently. This merging of the stacks is now also used by the sequential
implementation and the implementation on the transputer.

- Suspending and resuming processes is described below.

- Processes are scheduled round robin. This is implemented by decrementing a
counter before every jump and subroutine call instruction and descheduling

the process if the counter was zero. For the jump instruction this is
implemented very efficiently on the MC680x0 processor by using the DBRA
instruction. In this way there is hardly any overhead when no descheduling is
necessary. For the subroutine call the overhead is small. Currently
descheduling occurs after 100 jump or subroutine call instructions.

- Processors are simulated using a timer. A simulated processor is descheduled
when one if its processes is descheduled and the timer has expired. Currently
this is done 500 times a second.

- All processors share the same heap. When the heap is full, all simulated
processors are suspended while the garbage collection occurs. The processors
are copied to the other semi-space one at a time by the copying collector (with
copying a processor we mean copying the local nodes referenced by the
processor). The (one space) mark sweep collector (Groningen et al. (1991)),
which is sometimes used by the sequential implementation, cannot be used
yet. While copying one processor, the garbage collector doesn't examine
memory belonging to other processors. Instead global garbage collection
(between processors) is done using one bit reference counting, which of
course doesn't reclaim all unused memory.

- Simulated processors communicate using message passing. The messages are
read by communication processes. Every simulated processor has such a
communication process.

- Graphs are send using the copying algorithm described in this paper.

Waiting processes.

One of the problems that has to be solved to implement a parallel functional language
is how to let a process wait until a node is in head normal form.

This waiting occurs in three situations:

1. A process wants to evaluate an indirection node to a node on a remote
processor. On a distributed memory architecture communication between the
processors is then necessary to fetch the result. In such a case the process
should be suspend after sending a request. The process should be resumed
when the node has been overwritten with the head normal form. This head
normal form is send by the remote processor as answer to this request.

2. If a request arrives from a process on a remote processor for a node that is not
yet in head normal form. Then the process that is responsible for answering
the request has to wait until the node is overwritten with its head normal form
before the result can be send.

3. A process wants to evaluate a node that is already being evaluated by another
local process. In such a situation the process should be suspended, and
resumed when the other process has overwritten the node with its head normal
form.

To be able to do this, there should be a way to detect if a graph is being evaluated.
Most implementations do this by marking the node in some way when evaluation of
this node is started. For example by using a special evaluation address (in the PABC
machine, Nocker et al. (1991), Kesseler (1991)) or using a bit in the 2@ X<
machine, Augustsson and Johnsson (1989)).

This marking is called reserving, or locking. A node which has been reserved is called
a reserved node. Reserving is not only necessary (for some nodes) for parallel
evaluation, but is also very useful for sequential evaluation. It is useful because it can
be used to prevent some space leaks and to detect a cycle in the spine during
evaluation. Although this reserving slows down program execution, the benefit of
having fewer space leaks is usually more important than the cost of executing one or
a few more instructions for every closure. So we do not consider this reserving as a
problem.

Resuming a process after a node has been overwritten by its head normal form is
more difficult. Several possible solutions are discussed below.

Waiting lists.

One way to implement suspending and resuming processes is to add a list of waiting
processes to every reserved node. When a process needs to evaluate a reserved node,
the process is removed from the scheduling list, and added to the waiting list of the
reserved node. When this node is overwritten (by a node in head normal form), the
processes in the waiting list are resumed.

The disadvantages of this method are:

1. Before overwriting a node with its head normal form (an update), it is
necessary first to the check if the node contains a waiting list. And if so, all
processes in the waiting list have to be resumed. Because the number of
updates performed during execution of a program is usually large, the cost in
execution time is high. And because more instructions are generated for an
update, programs get larger too.

2. Reserved nodes should contain a waiting list or some indication whether or
not the node contains a waiting list.
Storing a waiting list in all reserved nodes would mean that every time the
evaluation of a closure is started, an empty waiting list should be stored in the
node. Because the number of closures which are evaluated during execution is
large, this cost is high.
Another possibility is to store a waiting list in every closure. Then no empty
waiting list has to be stored when a node is evaluated, but closures are larger
and more expensive to build, so this is even worse. This method is used at the
moment by the transputer implementation of the PABC machine (Kesseler
1991).
A better way is to have some indication whether the node contains a waiting
list, and only store the waiting list if there is one. If we combine this
information with reserving a node, then there is no additional overhead when
the evaluation of a closure is started. This approach is used in tBe <
machine (Augustsson and Johnsson (1989)).
In the PABC machine a node is reserved by overwriting the evaluation
address in the closure by the address of code which suspends a process and
inserts it in the waiting list. Because there are only a few of those addresses,
we can easily make two versions of those addresses. One that is used when
there is no waiting list and the other when there is a waiting list. For example
on the transputer we could store one version at an even address and the other
one at an odd address. Then the least significant bit indicates that there is a
waiting list. Because these nodes only contain this evaluation address, there is
free space in these nodes to store a waiting list.

3. The garbage collector should be able to copy waiting lists.
Optimising waiting lists.

The most important of these disadvantages is that when a node is updated we have to
test if there is a waiting list, and resume all processes in the waiting list if so. For
some implementations it is however possible to prevent this overhead when the
waiting list is empty. How this can be done depends on how closures are represented
and how updates are performed.

For example, in the implementation of Concurrent Clean on ZAPP (Goldsmith,
McBurney and Sleep (1991)) a closure is represented by a pointer into a symbol table
and the arguments of the closure. The symbol table contains an entry to code which is
executed when an update has to be performed. In this implementation testing for
waiting lists is prevented by making two symbol table entries for every function. One
that contains update code which is used when there is no waiting list. And one that
contains update code which resumes the processes in the waiting list. Usually
closures contain a pointer to the first table entry, but when a process should be moved
to the waiting list, the pointer in the closure is changed to the second table entry.

A disadvantage of this method is that an extra indirection is necessary to evaluate a
closure. This extra indirection is required to fetch the evaluation address from the
symbol table. Some other implementations (see below) don't have such an indirection.

For the PABC machine we cannot use this solution, because after evaluating a node
execution continues at the return address on top of a stack, and not at an address
which is found in a symbol table (in the PABC machine a closure contains a pointer
to the code to be executed when the closure has to be evaluated, instead of a pointer
into the symbol table). For implementations like this we can use one the methods
described below.

These methods prevent unnecessary testing for waiting lists by changing the return
address when a waiting list is added to a node. This is done when a process starts to
wait for a node which does not yet contain a waiting list. This return address should
point to code which reactivates the processes in the waiting list and then jumps to the
original return address.

Then the process will be resumed after the node has been updated. And there is no
overhead in the common case that a node doesn't contain a waiting list, because a
normal return address doesn't have to check for one.

One way to do this is to store a pointer to the stack element containing the return
address in a reserved node. We do this when we start to evaluate the node. This would
mean an extra instruction has to be executed for every evaluation. But this is still
faster than testing for a waiting list. Also the address of the stack element can be
changed when the stack is reallocated because it has become too small (or by the
garbage collector in some implementations). Then the address of the stack entry has
to be relocated too. Doing this is quite complicated, so this doesn't seem to be a good
solution. But this is not a problem when linked or fixed size stacks are used.

A more elegant solution was proposed by Marco Kesseler. This solution is not to
store the return address on a stack, but in the node which is going to be evaluated. To
do this the return address is passed as an argument to the evaluation code. The
evaluation code stores this return address in the node after copying the argument(s) of
the node on the stack. And before updating the node with the head normal form, the
return address is loaded from the node and then jumped to.

Unfortunately some frequently used processors, like the Motorola MC680x0 and the
Intel 80x86, cannot store(load) the return address in(from) a node as efficiently as
in(from) the stack. For example the MC680x0 needs 5 instructions instead of 2 (a JSR
and a RTS) to accomplish this. So for these processors this optimisation is probably
not worthwhile. But for the transputer and most RISC processors this could work
well. Another advantage of this method is that less stack space is used, because the
return address is now stored in the node.

For both approaches there is still another problem: where to store the original return
address and the process identification when a process has to be suspended. A possible
solution is to store this information in a new node or in the process table entry (or
process node). The machine code to be executed after the node has been updated
should then be stored in that place as well. Then this code can find the original return

address and the process identification. The return address on the stack should then
point to this code after suspending the process. Unfortunately, this could cause some
small problems for the garbage collector.

Yet another problem for both solutions is discussed in the section '‘Creating fewer
interleaved reducers'.

Using sharing information.

Only nodes which are being shared by more than one process (and are not yet in head
normal form), can contain a waiting list. So to optimise the check for waiting lists, we
could try do this check only when a node might be shared by several processes.

This is probably similar to trying to prevent updates when nodes cannot be shared.
This has been suggested for the Spineless Tagless G-machine (Peyton Jones and
Salkild (1989)) and TIM (Fairbairn and Wray (1987)). They propose to use some
form of static analysis to detect sharing, and then to use this information to generate
update frames (STG-machine) or markers (TIM) only when necessary. Unfortunately,
to use this approach many functions have to do argument satisfaction checks or check
for markers. This is probably not much faster than testing for waiting lists. Also, we
don't know how effective and expensive this sharing analysis would be.

Polling processes.

Another way to implement suspending and resuming of processes, is to let a
'suspended' process poll every time it is scheduled. So, if a process wants to evaluate
a node which is being reduced by another process, it deschedules itself and doesn't
remove itself from the scheduling list, but enters a polling state. When a process in a
polling state is scheduled, it checks if the node has been updated with its head normal
form. If this is not the case, it deschedules itself and doesn't change its state so that it
will do the same actions the next time it is scheduled. But if the node has been
updated, the process leaves the polling state, and resumes normal execution.

The advantages of this method are that it is very easy to implement and that there is
no overhead for sequential execution and if no processes are waiting. A disadvantage
is that is very inefficient if many processes are waiting.

Optimising polling processes.

It is however possible to prevent polling in many cases. We already explained that
there are three situations in which a process starts to wait (and thus poll).

In the first case (an indirection node to a node on a remote processor has to be
evaluated), the process can only be resumed if a message arrives with the head
normal form of the node. So it is not necessary to put the process in a polling state,
but the process can be suspended (removed from the scheduling list), and resumed
when the message with the head normal form arrives.

To implement this, we added a list of waiting processors to channel nodes. Channel
nodes are indirection nodes which point to a remote processor. The code which is
called when a channel node is evaluated, sends a request (but only if no request has
been send yet for this channel node), adds the process to the waiting list and removes
it from the scheduling list. When the message with the head normal form arrives, the
processes in the list are resumed.

In the second case (a request arrives from a process on a remote processor for a node
which is not yet in head normal form), a naive implementation would start a waiting
process for every request which cannot be answered immediately. A more efficient

way would be to create a list of all nodes for which a request has arrived (and not yet
answered). And let a communication process check whether these nodes have been
updated to head normal form every time the process is scheduled. In this way the
scheduling overhead is smaller. And only one check is necessary per node, even if
more requests arrive for the same node.

To do this, we added a list of requests to nodes for which a request can arrive (global
nodes). If a request arrives for a node which is not yet in head normal form, the
request is added to the list of requests for this node. And the node is added to the list
of global nodes which are checked by the communication process (except if it is
already in this list) Then, if the communication process detects a node for which an
answer can be send, it sends an answer to all processes for which a request is in the
request list, and removes this node from the list.

Note that when no message can be send, because the communication process hasn't
finished sending the previous message, no polling is necessary.

The cost of optimised polling and waiting lists.

The current implementation uses polling with the optimisations described in the

previous section. We have run several programs to determine the overhead of this
optimised polling. The overhead was determined by counting the number of polls.

Two counters were used. One counter counted the number of polls by normal

processes. The other counter counted the number of polls by the communication
process. The counters were not incremented when all processes were polling.

The cost of every poll was estimated. Polling by normal processes was estimated to
cost 90 clock cycles for every poll. The time it takes to deschedule the process is
included in this number. Polling by the communication process was estimated to cost
32 clock cycles for every poll.

The programs where run a Macintosh IIfx. The results of these measurements are: (all
times in seconds)

total number ol number of total overhead o
simulation process communicat overhead o polling (%):
time: polls: ion proces polling:
polls:
quicksort 26.68 140 2610C 0.021 0.079
queens 25.67 0 10650C 0.085 0.33
nfib 4.73 0 946 0.0008 0.016
fast fourier 17.27 0 270 0.0002 0.001
warshall 1 3.47 5500 5400 0.017 0.48
warshall 2 6.17 6400 4900 0.018 0.30
sieve 1 43.80 0 21400C 0.17 0.39
sieve 2 40.92 20 3000 0.0025 0.006
sieve 3 38.32 14300C 6800 0.33 0.85

So for all these programs the overhead for polling is less than 1 percent. Most of
these programs use course grain parallelism, except the sieve programs. Sieve 1 and 2
use fine grain parallelism.

The same programs were run to determine the overhead of testing for waiting lists.
We have assumed waiting lists are indicated by setting a bit in the tag. We have
estimated the cost of testing this tag bit to be 14 clock cycles.

total number of total overhead o average idl
simulation tests fo overhead o waiting lists time (%):

time: waiting waiting (%):
lists: lists:
quicksort 26.68 28000C 0.098 0.37 75
queens 25.67 138000C 0.48 1.88 22
nfib 4.73 233 0.00001 0.0002 11
fast fourier 17.27 6960C 0.024 0.14 51
warshall 1 3.47 4210C 0.015 0.43 56
warshall 2 6.17 4070C 0.014 0.23 46
sieve 1 43.80 23500C 0.082 0.19 49
sieve 2 40.92 5120C 0.018 0.04 79
sieve 3 38.32 83700C 0.29 0.76 61

So for these programs the overhead for testing for waiting lists is less than 2 percent.
This is lower than we expected. The reasons for this low overhead are that the
processors spend too much time doing nothing (see idle times in table) and copying
graphs. Also our estimate of 14 clock cycles is only accurate if the instructions which
test for waiting lists are in the instruction cache of the processor.

We can also see that polling is much faster for queens and quicksort, and a little bit
slower for warshall and sieve. Polling is only slower for nfib and fast fourier, but for
these programs the overhead is very small in both cases. So polling with a few simple
optimisations is more efficient than waiting lists for our test programs.

A combination of polling and waiting lists.

A further improvement is possible because the node a process is waiting for is very
often the root node of another process. In this situation we can use waiting lists
efficiently, because we only have to check such a root node for a waiting list when
the process finishes reducing. Then in this situation, we no longer have to poll for
these nodes, and there is no cost for sequential execution and only a small cost for
course grain parallelism.

If all the optimisations are implemented, then polling is used only for nodes for which
another local process is waiting or for which a request has arrived and which are not
the root node of a process. All other process/requests waiting for a node are
resumed/answered when a process terminates or an answer to a request arrives.

Creating fewer interleaved reducers.

In Concurrent Clean {I} annotations are used in programs to start a new process on
the same processor. Such a process is called an interleaved reducer. An interleaved
reducer reduces the graph to head normal form.

In the Concurrent Clean programs we have written, we very often use functions
which evaluate the head of a list using a strictness annotation and the tail of this list
using an {I} annotation. This tail is very often a recursive call of the same function.
For every call of such a function a new interleaved reducer is created, and the old one
dies, except possibly for the first call. Creating interleaved reducers is expensive, so
this inefficient.

To eliminate this inefficiency, we want to change the compiler so that it is possible to
let the old process continue with the work which would otherwise have been done by
the process started with the {I} annotation. Then no new process has to be started,
and the reduction goes much faster.

So the code for such a function would first compute the head of the list, then update
the root node, and then continue with the reduction of the tail of the list.

If we use waiting lists, we also have to check for a waiting list every time the function
is called. And the optimisations to prevent overhead for waiting lists described in the
section ‘optimising waiting lists' cannot be used in this situation.

Because many Concurrent Clean programs contain similar functions, this is a serious
disadvantage of using waiting lists. Implementations using polling do not have this
problem. So for these implementations efficient code can be generated for such
functions.

Waiting listsor polling for Concurrent Clean ?

The current implementation of polling uses less than 1 percent (on average 0.27%) of
the execution time for the programs we tested and is easy to implement. No extra
code has to be generated by the compiler and no extra information has to be stored in
the nodes.

The naive form of waiting lists is slower for these test programs, the overhead is less
than 2 percent and on average 0.45 percent.

An optimised form of waiting lists could be faster than optimised polling. But these
solutions are difficult to implement and generate more code. Some of the overhead
eliminated by the optimisations would be introduced again if we change the compiler
to compile some functions as described in the previous section.

At the moment the overhead caused by checking for stack overflows and
descheduling is much higher (see below) than the overhead caused by polling. So at
the moment the efficiency of suspending and resuming processes is more than
sufficient.

Graph copying.

When a parallel process is created on a distributed memory architecture usually a
copy of a graph has to be send to another processor. Many implementations do this by
first creating a local copy which is represented in the same way as a normal graph.
And then this local copy is send to the remote processor. This approach is used by
Concurrent Clean on ZAPP (Goldsmith, McBurney and Sleep (1991)) and by the
PABC machine implementation on the transputer (Kesseler (1991)).

In this way, the processor which receives this graph has to do very little work to start
the new process. Unfortunately, this representation is not the most compact
representation of the graph.

For example a copy of the graph CONS (INT 1) (CONS (INT 2) NIL) would be
represented by:

cons [3 Fs Pint [P 1 PoonsP s [0 Post [F 2 [N

If all nodes in the graph are referenced only once, we can leave out all the pointers
(3,5,8 and 10 in the example), and are still able to reconstruct the graph. Then the
copy becomes:

cons PNt 1 feons PNt P2 P

Now the size of the copy is only 7 words instead of 11 words.

And (CONS (INT 2) NIL, NIL, CONS (INT 4) NIL) becomes: (breadth first copy)

3TUPLE [cons F NI feons PNt P 2 P Pint g PPN

If a node is referenced more than once, we can still use pointers if we choose the
representation of pointers and constructors in such a way that we can distinguish
them. In our implementation this is done by setting the least significant bit of a
pointer. (pointers and symbols are always on an even address) For the first reference
to such node, we do not use a pointer. For example the copy of the graph CONS (a:
INT 1) (CONS a (CONS a NIL)) is:

cons PNt F o1 feons[F 1 Peons P 1 [P

If we assume nodes consist of just a symbol and arguments, the size of the copy is the
number of unshared nodes + the number of pointers (arguments) to shared nodes.

If there is no sharing, every symbol in such a copy is followed by the root nodes of
the arguments, so the copy is made in a breadth first manner. It can also be done in a
depth first manner, then the symbol is followed by the whole subgraph of the first
argument (if it has an argument), then the subgraph of the second arguments, etc. But
this turned out to be more difficult.

There are algorithms to create such a packed copy and unpack it which are about as
fast as creating a normal copy. These algorithms are discussed below. The advantages
of using this way of copying are:

- Fewer information has to be send across the communication network. So
messages are smaller. Or when large graphs are split into smaller messages,
fewer messages have to be send. So communication will be faster. And if
through-routing has to be performed by the processor, sending fewer
messages also means that less processor time is wasted by routing.

- Less space is necessary to store a local copy on a sendingsmockhis is
important if messages are buffered. This happens when messages are
produced faster than can be send, or when the communication channel is
unreliably and messages cannot be removed until an acknowledgement has
been received.

Disadvantages are that more memory is required to unpack a copy, and that

unpacking is a little bit slower.

The copy algorithm for the sending processor.

To describe the algorithms we will assume all nodes consist of just a symbol and
arguments.

Creating a packed copy as described above can be done in a similar way as the
scavenging algorithm used by a copying garbage collector. But instead of copying the
whole node to the start of free memory (to-space), the symbol is copied to the
beginning of memory, and the arguments (the pointers) of this node to the end.
Except when a node has already been copied, then the address of the copy of this
node is copied to the beginning of memory. But in such a way that it can be
recognised as a pointer (and not a symbol)

The most important variables used by the algorithm are:
symbol _p: pointer to symbol of node which is to be scavenged (of which the
arguments should be copied).

end_synbol _p: pointer to the end of the memory block containing symbols and
pointers to shared nodes, where new symbols and pointers to
shared nodes are created.

ar gunent _p: pointer to an argument of the node which is being scavanged.

end_ar gunent _p: pointer to the end of the memory block containing the arguments,
where new arguments are copied to.

free: the numier of free words in the memory block.

Before the starting this scavenging like algorithm, first the root node has to be copied
(evacuated). To prevent having to write evacuation code, this is done by branching
directly into the loop after setting up the variables appropriately.

ar gunent =addr ess_of _root_node_of the_graph_to _be copied
arity = n =1

synbol _p = end_synbol _p = begin_of free nenory
argunent _p = end_argunent _p = end_of free_nenory

free = size_of _free_menory

GOTO begi n_copy

WHI LE synbol _p < end_synbol p
| F is_marked_pointer (*synbol _p)

++synbol _p
ELSE
arity = node_arity (*synbol _p++)
FOR n=1 TO arity
argument = *--argument_p
begi n_copy: | F is_marked_pointer (*argument)

free -= 1
IF free <0

GOTO gar bage_col | ect
*end_synbol _p++ = *ar gunent

ELSE
argunent _arity=node_arity (*argument)
free -= 1 + argunent_arity
IF free <0

GOTO gar bage_col | ect
*end_synbol _p = *argunent
*argument ++ = nark_poi nter (end_synbol p)
++end_synbol _p
FOR me1 TO argunent _arity
*--end_argunent _p = *argument ++

Now the packed copy is stored in the memory area frorhdéien_of _free_nenory

to thesynbol _p. During this copying the nodes of the original graph are overwritten
by indirections to the copy of the node. The following code is used to restore the
original graph:

restore_original _graph
VWHI LE end_argunment _p < end_of free_nenory
node p = *end_argunent p++
| F is_marked pointer (*node_p)
*node_p = *unmark_poi nter (*node_p)

If there is not enough memory available to copy the graph, the original graph is
restored in the same way, the memory used during the copying is released, then the
garbage collector is called and a new attempt is made to copy the graph.

The copy algorithm for thereceiving processor.

Unpacking also uses an algorithm similar to scavenging. Now copying the nodes in
done in the usual way, i.e. both the symbol and the arguments are copied to the
beginning of the memory area. But reading the arguments to be copied is simpler,
because the nodes are already stored in the right order. So the original is traversed
from the beginning to the end.

When a symbol is copied, space is reserved for the arguments immediately. These
spaces are filled in when the root node of the argument is copied.

The most important variables used by the algorithm are:

node_p: pointer to the node which is to be scavenged (of which the
arguments should be copied).

end_node_p: pointer to the end of the memory block containing the already
copied nodes, where new nodes are created.

graph_p: pointer to the next argument which is to be copied.

free: the number of free words in the memory block.

The same trick is used again to copy the root node:

graph_p = address_of the_graph_to_be_copi ed
node_p = end_node_p = begin_of _free_nenory
free = size_of _free_nmenory

arity = n=1

GOTO begi n_copy

VWHI LE node_p < end_node_p
arity = node_arity (*node_p++)
FOR n=1 TO arity
begin_copy: IF is_narked pointer (*graph_p)
*node_p++ = *rel ocate_narked_poi nter (*graph_p++)

ELSE
argument _arity = node_arity (*graph_p)
free -= 1+ argunent _si ze
IF free <0

GOTO gar bage_col | ect
*end_node_p = *graph_p
*node_p++ = end_node_p
*graph_p++ = end_node_p
end_node_p += 1 + argunent_arity

Now the memory area from tlhegi n_of _free_nenory tonode_p contains a normal
copy of the graph. The original has been changed, but is not used anymore, so it
doesn't have to be restored.

Except when there is not enough memory to copy the graph, then the original is
restored using:

restore_original _graph
p=begi n_of graph
WH LE p < graph_p
| F is_not_a_narked_pointer (*p)
*p:**p
++p

and then the memory used during the copy is released, the garbage collector is called
and a new attempt is made to copy the graph.

Note that to be able to restore the graph, it should be possible to detect the difference
between a marked pointer and the pointer stored by the Hgeph_p++ =

end_node_p'. In our implementation this is possible because for a marked pointer the
least significant bit is set, and for a normal pointer it is not set.

Results.

To measure the overhead of checking for stack overflows and scheduling some
simple programs were run on a Macintosh licx (16Mhz MC68030 without cache):

program: time (s): time including overhead (%):
overhead (s):
fast fourier 14.88 15.25 2.5
sieve 11.50 12.63 9.8
gueens 42.45 49.50 16.6
reverse 52.25 52.26 0.1
twice 1.53 1.73 13.1
tak 6.60 7.58 14.8
integer nfib 6.11 7.86 28.6
real nfib 6.13 6.35 3.6

So the overhead is usually between 0 and 30 percent of the execution time without
checking for stack overflows and scheduling.

The programs below were run on a Macintosh llIfx (40 Mhz MC68030 with 32K
external cache) with 8 M memory using system 7.0.1. (queens is not the same
programs as above, the compilers used are different too) Sixteen processors were
simulated. All execution times are in seconds.

program: time total simulation speedup: (1t
(sequential simulation time / numbe processors)
code): time: of processors:

fast fourier 4.88 17.3 1.08 4.5

gueens 13.28 25.7 1.60 8.3

matrix 2.18 9.93 0.62 3.5

quicksort 1.31 26.7 1.67 0.78

nfib 2.48 4.73 0.30 8.4

Annotations are only used to create coarse grain parallelism. The fast fourier program
also contains strictness annotations to speed up execution.

Fast fourier performs the fast fourier transformation of 8192 complex numbers.
Queens computed the number of solutions on a 10x10 board.

Matrix multiplies two 64x64 real matrices.

Quicksort sorts 10000 integers.

Nfib computes nfib 30.

Refer ences.

Brus T., Eekelen M.C.J.D. van, Leer M. van, Plasmeijer M.J. (1987), 'Clean - a
Language for Functional Graph Rewriting', Proc. ‘of the third International
Conference on Functional Programmlng Lanlg_juages and Computer Architecture
F7IZCA 'Sgé)legoézland, Oregon, USA, Springer Lecture Notes on Computer Science

» PP. ~O04.

Augustsson L., Johnsson T. (1989). 'TheG>-machine: an abstract machine for
Igarallel graph reduction’, Proceedings of the Conference on Functional
rogrammin Lan%uages and Computer Architecture (FPCA '89), Imperial

College, London (1I-13 September), pp 202-213.

Fairbairn J., Wray S (1987). 'TIM: A simple, lazy abstract machine to execute
supercombinators', Proceedings of the Functional Programming Languages and
(Hlo_rgpl%ter Architecture Conference (FPCA '87), pp 34-45, LNCS, 274, Springer,

eidelberg.

Goldsmith R., McBurney D.L. and Sleep M.R. (1991). 'Concurrent Clean on ZAPP',
Proceedings of the Semagraph '91 Symposium on the Semantics and Pragmatics of
Generalll%)%% Graph Rewriting, Nijmegen, the Netherlands, (10-12 December), to
appear :

Groningen J.H.G. van. (1990), 'Implementing the ABC-machine on M680x0 based
architectures'. Master Thesis, University of Nijmegen, November 1990.

Groningen J.H.G. van, Nocker E.G.J.M.H., Smetsers J.E.W. (1991). 'Efficient heap
management in the concrete ABC machine’, Proceedings of the Third International
}]Norkig%plon the Parallel Implementation of Functional Languages, Southampton,

une :

Kesseler M.H.G. (1990). 'Concurrent Clean on Transputers', Master Thesis,
University of Nijmegen, November 1990.

Kesseler M.H.G. (1991). 'Implem_entin%vthe PABC machine on transputers’,
Proceedings of the Third International Workshop on the Parallel Implementation
of Functional Languages', Southampton, June 1991.

Koopman P.W.M., Eekelen M.C.J.D. van, Nocker E.G.J.M.H., Smetsers J.E.W.,

lasmeijer M.J. (1990). 'The ABC-machine: A Sequential Stack-based Abstract

Machine For Graph Rewriting'. Technical Report no. 90-22, December 1990,
University of Nijmegen.

Nocker E.G.J.M.H., Smetsers J.E.W., Eekelen, M.C.J.D. van, Plasmeijer (1991).
'Concurrent Clean', Proceedings of the Conference on Parallel Architectures and
Languages Europe (PARLE '91), Eindhoven, The Netherlands, Lecture Notes on
Computer Science, Springer Verlag, June 1991.

Peyton Jones S.L, Salkild J.F(1989_). "The Spineless Tagless G-machine'. Proceedings
of the Conference on Functional Programmlng2 Languages and Computer
Architecture (FPCA '89), Addison Wesley, pp 184 - 201.

Smetsers J.E.W., (1989). 'Compiling Clean to Abstract ABC-Machine Code',
University of Nijmegen, Technical Report 89-20, October 1989.

