ALSO PUBLISHED IN THEPROC. OF THETHIRD WORKSHOP ON THEPARALLEL IMPLEMENTATION OFFUNCTIONAL
LANGUAGES(1991), TECHNICAL REPORTSERIES CSTR 91-07,UNE 1991, INIVERSITY OF SOUTHAMPTON, UK.

EFFICIENT HEAP M ANAGEMENT IN
THE CONCRETE ABC MACHINE

John van Groningen, Eric Nocker, Sjaak Smetsers

Faculty of Mathematics and Computer Science,
University of Nijmegen,
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
E-mail: clean@cs.kun.nl

June 1991

Abstract

This papergivesa descriptionof the heapmanagemensystemusedin the implementationof

ConcurrentClean.The compilationof ConcurrentCleanto concretetarget machinecodeis

donewith the aid of the abstractABC machine.The ABC machineis a stack basedgraph
reductionmachine.The way graphscan be representecind manipulatedon a real machine
efficiently will be discussedAn importantpart of the heapmanagemensystemis formed by

the garbage collection algorithm: a combinatidra copyinganda sliding compactiongarbage
collector. It will be shown that a smarbderepresentatiotogetherwith the proposedgarbage
collector makes it is possible to run large functional programs on rather small machines.

1. Introduction

The current state of the affaiath respecto the implementation®f functionallanguagess that, in
contrastwith the past,the time efficiency of functional programshas beenimproved significantly.
Executing programs written in functional languages, such as LML (Augustssohnssor(1989)),
Hope (Burstall et al. (1980)) and ConcurrentClean(Nocker et al. (1991)), shows that the current
implementationsof theselanguagesare evenable to competewith implementationsof imperative
languages such as C. However, a disadvantage ofldreggagess that, when executedfunctional
programs tendo consumedarge amountsof memoryin a very unpredictablevay. The main reason
for this is thatthe lazy evaluationschemeof functionallanguagess, asfar asthe usageof spaceis
concerned, far from optimal. Besides that, the memuagiagemenhasto be controlledfully by the
run-time system. A consequenceés that most implementationsof functional languagesare only
available on large machines. An exception to this is the Concurrent Clean dyattmits elaborate
and efficient memory managemenit is possibleto executelarge programson rather small micro
computers (such as a Macintosh Plus equipped with only 2.5M of RAM).

In this paperwe will discussthe memory managemenpart of the ConcurrentCleansystem.The
description will be given with the aid of the abstract ABC machihieh is usedfor the compilation
of Concurrent Clean Brus et al. (1987), (Smetsers (1989), Eesieden(1990)). The ABC machine
(Koopmanet al. (1990))is a stackbasedgraphreductionmachine,similar to advancedG-machine
like architectures (e.g. Johnsson (1987), Peyton Jones & Salkild (1989§ycfliaftargetprocessor
for implementingthe ABC machineis the Motorola MC68020 processor.Due to the similarity of
both the ABC machingith otherabstractmachinesandthe MC68020processomwith otherregister
based processors, it will not be difficult to use the presented ideas in other implementations.
Note that this papercontainsonly a descriptionof the heapmanagementA completedescriptionof
the compilation of Concurrent Clean to MC68020 code can be fouBthetserg1991). It includes,
for example,a discussionof the parametempassingmechanisnmon the ABC level and a register
allocation algorithm based on basic block analyses.

Overview of the paper

In the rest of this introduction we give a very short overviethe/ABC machine.Thenwe describe
how the basiccomponentf the ABC machineare mappedonto the MC68020 (Section 2). In

Section3 we presenta very efficient implementatiorof a garbagecollector. Finally, we discussthe
effects of the heap representatiorand the garbagecollection algorithm with the aid of a few

benchmarks (section 4) .

The ABC Machine

Since a complete, formal description of the ABC machine goes far beyond the scope of thisgaper
will restrictourselvesto a shortintroduction. In the sequel,specific parts of the machinewill be
highlighted further if necessary.

The ABC machine is stackbasedgraphreductionmachine. Its main partsof interestarethe three
stacks(A, B and C stack)andthe heap.The C stackis usedfor storingcodeaddressesThe other
two stacksare usedfor evaluatingor building expressionsfor passingargumentgo functionsand
for returningresultsfrom functions.The A stackcontainsaddressesf nodesin the heap,whereas
the B stack containsvaluesof basictypes, suchas integersor reals. Thus, basic values can be
represented in two ways: as a node in the heap or as an item on the B stack. Graplesnsisic
collections of nodes, are stored in the heap. A node iIABE@ machine which represents node of
a Concurrent Clean graph, has a variable size.

The structure of nodes

Generally spoken, a node of a Concurrent Clean graph consists of a syithketertainnumberof
argumentsRepresentin@ nodeas a variablesizedobjectcausegroblemswith updating:the new
node doesnot needto fit in the spaceof old one. This problem can be solved by introducing
indirection nodes, but this will slow down the access to the contents of a node. In thaakBiGea
nodeis split in a fixed anda variable sized part. The fixed size part containsa descriptor,a code
pointer and a pointer to a variable sized part.

| descriptor code pointef aguments

Fig 2.1 The node structure

Thedescriptor is a representation of a Clean symbol. Normally it is an index or poirdetascriptor
table. Descriptorsare usedfor patternmatching,evaluatinghigherorder functions and for fetching
the arity of the node (for instance, during the garbage collection).

The code pointer refers to code with which the node can be evaluated twhsatform. This code
is enteredby a j sr_eval instruction. During reductionthe code pointer can be changed.For
example, after entering the node for evaluation a pointer to arreuatore canbe stored.If the node
is ever entered again (indicatingnan-terminatingreduction)this codewill be executedlf a nodeis
updatedwith a headnormal form value, the code pointer points to specialcode just containinga
return statement:

_hnf _code: rtn

In the variable sized part the arguments of the node are stored. Thistha#msargumentdaveto
be fetchedvia an extraindirection. On the otherhand,updatinga nodeis simple: updatethe fixed
part, and allocate space for the arguments.

For nodescontaininga basicvalue, e.g. an integer, the descriptordoes not representthe Clean
symbol (that would be the integervalueitself). Instead,all integerssharethe samedescriptor(e.g.
INT). The integer value itself is stored in the argument referenceHuarbasicvaluesthat do not fit
in the fixed part of a node (e.g. strings) a pointer to the (&uevhich spacehasto be allocated)is
stored.Sincebasicnodesare alwaysin normal form, they all containthe headnormal form code
pointer.

Higher order functions

In the ABC machine curried functicapplicationsare representedby partial nodes, i.e. nodeswith a
partially filled argument part. Such nodes are built as stamdatds,but containspecialdescriptors.
Therefore,n+1 descriptorsare defined for each ConcurrentClean symbol of arity n. In many
respects, the ABC machine treats partial nodes in the same way as standard nodes. Hpargakr, a
nodemay be appliedto anothemode.If thatnodeneedsexactlyone moreargumentall arguments
are available: the function of the partial node can now be called. Otherwise, a newpdgitat is

a copy of the original node with one extra argument, will be built.

2. Representing the ABC Machine

In this section we will describe how abstract ABC maclsnmappedonto a concretemachinecode.
The target machine used in the description is based on the Motorola MC68020 processor.

The MC68020 processorcontainsbesidesa programcounter and a statusregistertwo kinds of
generalpurposeregisterso wit dataand addresgegisterseightof eachkind. The dataregisters,
often indicatedby d0-d7, are mainly usedin arithmetical operationswhilst the addressregisters
(indicatedby a0-a7)can be usedto accessdatastructuresthat are kept in memory. An important
propertyof this processois that the quality of the generatedccode strongly dependson how well
registers are utilised.

The basic machine components

Mapping the componentsof the ABC machine(i.e. ABC stacks, graph store (heap)) onto the
MC68020 does not cause many difficulties. Stacks can be implenstraaghtforwardlyusing some
of the address registers. Implementing the heap takes some more doing.

The A, B and C stack

The A and B stack are allocatetone contiguousareaof memorywherethey cangrow in opposite
direction.In this way a checkon stack overflow of both A and B stack can be done with a few
instructions (just compare the two stamkintersand checkwhethertheir differenceis not negative).
The pointers to the tops the stackareheldin registersfor the A stackregistera3is reservedfor
the B stack register a4 (for convenience we will refer to those registasp Bpdbsp from now on).

B stack A stack

bsp asp
Fig 2.1: The layout of the combined A and B stack

For the C stack the system stack is taken (i.e. the stacloygbd processoitself when performing
a subroutinecall). Therefore the jump andreturninstructionsof the ABC machinecan be mapped

directly on thoseof the MC68020(of course,for thej sr_eval instructionsotherthingshaveto be
done, see further on). This implies that address register a7 (normallyspliedeserved.

The descriptor table

We described how partial (curried) function applications are implemented on the ABC macthee. In
implementation of the ABC machine, not only the actual arity of the curried application is stthred in
descriptorbut alsoa pointer to the code that should be executedwhen a partial applicationof the
corresponding symbol is applied to an additional argument. In this way no tests are neededan ord
decide whether there are sufficient arguments available.

This results in the following representation of symbol descriptors:

=
0 [add_agumenf

Descriptor of
F with arity K |-
T

arl|ap_entry of F
ar

Fig 2.2: The lay-out of a descriptor in the descriptor table

F is a function with arity ar . The descriptorcontainsa string representatioof the nameand ar +1
entries. Now, the pointer stored in the descriptor fielthehodeis just a referenceto the entry that
corresponds to the arity with which Fastually applied.Besidesthis actualarity thatis usedby the
garbage collector, each entry contains the code that shoudbesdwhen a partial applicationof F
is applied to an additional argument. It shoulctlearthat this codeis just the add_ar gunent code
(i.e.the codethat copiesthe node and addsan argumentto it) unlessthe curried application has
alreadyar -1 argumentsin that casethe extra argumentprovides that this particular application
becomes complete. So the apply entriF cin be called.

The descriptors adll symbolsdefinedin a Cleanprogramare storedin a so-calleddescriptor table.
As a consequence, each application of a symbvath-actualarity k canbe representedby an offset
in this table that corresponds to the k-th entry of the descriptor of F.

With the aid of the previous representatiorthe translationof the apply code will result in the
following ABC instructions(we assumethat registeral refersto the node containing the partial
application and registet refers to the beginning of the symbol table):

nove 2(al), a2; get the offset of the descriptor entry

add. | st, a2; add this offset to the beginning of the descriptor table
nmove.|l 2(a2), a2; retrieve the reduction code
jsr (a2) ; call the reduction code

The heap

For the heap a contiguous area of memory is reserved. The pointer to the free areaiins retgisdr
a6 (calledhp), whereas the number of free heap cells (1 lveip= 1 long word = 4 bytes)is stored
in registerd? (fh from now on). With this representatioithe allocationof memorybecomescheap.
Also, the filling of newly creatednodesin the heapcan be done efficiently (for an examplesee
(Smetsers et al. (1991)).

Memory is recycledby a processcalled garbage collection. In our implementatiora combinationof
two kinds of garbage collectors is usedaopying anda sliding compaction garbagecollector.Both
collectors and there combination are described in section 3.

Representation of nodes

As describedearlier,a nodein the ABC machineconsistsof a fixed anda variable sized part. The
fixed size part consists offinterto a descriptor,a codepointeranda pointerto the variablesized
part. A drawback of the ABC node structusehat the size of the nodesis relatively large: the fixed
partwould consistof 3 long words (12 bytes),onelong word for eachpointer. It is importantthat
nodes are as small as possible: because less mengonsismedhe garbagecollectorwill be called
less often and also the filling and copying of nodes can be done faster.

The following observations make a more efficient representation of nodes possible:

. If a node is in headormalform, its codefield pointsto the headnormalform codeso in fact
only the pointer to the descriptoris of interest. On the other hand, if a node containsan
(unevaluatedexpressiorthe descriptoris not used(from now on we will call thesenodes
closures). This allows us to combine the descriptor and dadeé into onereducingthe size of
the fixed part by one third. However, one little probleasto be solved:the arity of a nodeis
neededby the garbagecollection. This arity, storedin the descriptortable, is not accessible
when the descriptor is no longavailable.The problemis solvedby storingthe arity not only
in the descriptortable but also just beforethe nodeentry suchthat it can be accessedia the
code pointer.

. Many nodes in head normal form have less than 3 argurffenisistance the list constructors
Cons and Nil). For this reason wavedecidedto createa variablesizedpartonly if thereare

more than 2 arguments. Note that such nodes are also large enough to hold integers and re.

. Only closuresare overwritten (i.e. once a node is in head normal it remains unchanged
forever). Furthermorea closureis neveroverwrittenwith anotherclosure.A consequences
that for the argumentsf closuresan additionalargumentpartis not necessarythe arguments
can be stored in the fixed part itself, provided that the whole node is large e¢omagitainthe
fixed part of a node in head normal form. The meansdbatiresalwayshavea minimal node
size of 3 long wordsvhich implies that for nullary and unary functionsresp.two long words
and one long word are spilled.

The new node structure is illustrated in the next two pictures. A disadvasthgeeachnodehasto
be suppliedwith a tag: the highestbit of the first word of the code/descffield (note that this field
consists of two words) indicates whethetantainsa descriptoror a codeaddresslf this bit is set,
the secondword is anindexin the descriptortable. Otherwise the code/descfield containsa code
pointer that is used to reduce the node to root normal form.

Ordinary representation of nodes:

| 1

arity
code segmen Y.
node ¢

entry l ________

Closures with arity 2 Head normal forms with arity 3

descriptorr descriptor table

Fig 2.3: The structure of nodes

Examples of alternative representations:

| Faclal |

Unary function Dyadic constructor Nullary constructor Integer

Fig 2.4: Examples of non-standard nodes

3 Garbage Collection

Garbagecollection is basedon a combinationof two well-known schemes:a copying garbage
collectionand a mark-scargarbagecollectionmechanismWe will not treatthe basicideasof these
algorithms, as this is out of the scopeof this paper(good descriptionscan be found in Sansom
(1991) for example).First, we will outline why for sucha combinationis chosen.However, the
techniquedescribeddependon the efficiency of the implementation.So, in the next two sections
some implementationdetails are discussed,for which we assumeknowledge about the precise
aspectof thesegarbagecollection algorithms.A detaileddescriptionof the implementationof the
garbage collectors can be found in Groningen (1991).

For a copying collectorthe heapis divided into two equally sized areas(semispaces). Memory is
allocatedin one semispaceWhen this areais filled up, the garbagecollector copiesall accessible
objectsto the other semispaceleavingall the garbagebehind. This schemehas somewell-known
positive properties:

. only the non garbageobjectsare visited. So, if not much heapspaceis used, the garbage
collection will be very fast.

. it is very easyto implement,thatis, it is relatively easyto obtainan efficient implementation.
For example, it can be written directly in assembly.

Unfortunately,it hasone major disadvantageonly half of the availablememory can be used. This
disadvantagdecomesrery clearif continuouslyalmosthalf of the heapspaceis allocated:though
still enoughheapspaceis available,very muchtime canbe spenton garbagecollection. In sucha
caseit might be betterto usea garbagecollectorthatis slower, but that canusethe whole heap. It

appeardo be possibleto switch to a mark-scancopying garbagecollectorat a certainpoint of heap
usage.

The mark-scarnvariantwe will consideris basedon Jonker'ssliding compactionalgorithm (Jonker
(1979)). It works in two phases:

. in the first phase (marking) all accessible heap objects are marked. This is done by traiversin

graphs, reachable from some collection of root nodes.

. in the second phase (scanniadj))markedobjectsare scannedTwo scansarerequired.In the
first scan all forwardingpointers(i.e. pointing to an objectwith a higheraddresspyre updated
with the addresse®f the new locationsof the objects.All pointerspointing backwardto a
particular objectrelinked in a list startingfrom that object.In the secondscanall objectsare

moved to their new locations. Also the backward pointers are updated with their new values.

This algorithm has two major disadvantages:

. the whole heap has to be scanned twice. So, the collection time is proportibesize of the
heap. Even if the number of accessible objects is small, the collection can take some time.

. for each object rather much work has to be done. The administration of the pointers is compl

In general, this garbage collector is slower ttf@copyingone. But if a certainamountof the heap
is filled, it will be faster.In Sansom(1991), wherea similar ideais presentedit is shownthat the

turning point r is at:
ki2-1
=71

where K is the ratio between thpeedsof the copying of objectsof both collectors.For example,if
the mark-scancollector is 3 times as slow, the turning point is at 25% heap use. In our
implementation we have measured this particular value for k.

Implementing a Copying Garbage Collector

As mentioned before, it is quite straightforward to implement a comanigagecollector. This holds
even if a wide variety of nodes @ssible.However,in the ABC machinethereis one point to take
account of. It is important that a garbage collection alvgagseedgotherwise the heapmight bein

sucha statethatit is impossibleto switch to the other collector).In the ABC machineit is possible
that argumentvectorsare sharedbetweennodes(becauseof the fi 1| _a instruction).In a simple
implementation of the garbage collector this sharing is lledhat caseit is possiblethat not enough
heapis availablefor makingthe copy. This canbe solvedby usingforwarding pointersto the new
argument vectors.

There are not many possibilities to optimise thasbagecollector. Yet, thereis one optimisationthat
hasto be mentioned.In principle, all nodeswill be visited twice: oncein the old semispacefor
making the copy and storing a forwardirgferenceandoncein the new semispacédor copyingthe
arguments. Thiss not necessaryor nodeswithout argumentge.g. Integersor Nil). If suchnodes
are stored at the end of the new semispace, they don't need to be scanned the second time.

Implementing a Sliding Compaction Garbage Collector

The mark-scamalgorithmis ratherinefficient. The main causesare the inefficient marking, and the

two scanswherecomplexpointer manipulationhasto be done. We will give someimprovements,
such that an acceptable performance is obtained. Innf@tsince we will assumeonetype of nodes:
each node consists of a descriptor field (which is large enough to hold a paodtedich is always
even),followed by someargumentsThereafterwe will discussthe particularproblemscausedby

other kinds of nodes.

The first improvement is obtained by rearranging the phases. It appéarsdssibleto combinethe
marking phaseandthe creationof the lists of backwardpointers(of the first scan).In the second
phase only one scan is needed, in which the nodes are copied, and all the pointers are updated.

Marking the graphrequiresa traversalof the graph. This can be done by using a pointer reversal
algorithm. The optimal way of traversing is depth-first, where the arguraemissited from right to

left. Thenonly the first argumentieedsto be markedin orderto detectthatall the argumentshave
been handled. After marking all arguments, the address of thatselflean be found without using
the arity. Pointerscan be markedeasily by using their leastsignificant bit (addressesre always
even).The backward list is constructed during the upward traversal.

The markingitself canbe doneby using a bit vector: eachlong word in the heapcorrespondswith

onebit. So, the nodesitself containno mark field. For this bit vector 1/33 of the heaphasto be

reservedlIn the scanningphaseit is rathereasyto find the markednodescorrespondingo the bits
that are set. The MC68020 has instructionswith which thesebit vectorscan be manipulatedvery
efficiently.

At the end of the first phase all accessible n@tesnarked,andthe descriptorfields of thosenodes
containa list of all backwardpointersto that node (endingwith the value of the descriptorof the
node, which can be distinguished because it is not marked). Now, the firstarosbdely be moved
to its new position, since there are no forwarding pointetisissmode. All backwardpointersto this
nodeare updatedwith the new positionof the node,andthe descriptoris storedin the new node.
Since there might befarwarding pointerto the next node, it cannotbe copiedimmediately.This is
solved by addingall forwarding pointersof the first node to the appropriatelists of backward
pointers. By repeating this, all nodes can be moved to their new positions.

For nodesthat are split in two partsthis algorithmhasto be changedslightly. This canbe doneby
consideringargumentvectors as nodesalso. However, since the layout of ordinary nodesand
argumentvectorsdiffers, the garbagecollector hasto be ableto distinguishbetweenthem. For the
markingthis is no problem,sinceargumentvectorsare alwaysvisited via the fixed sized part of a
node. During the generationof the backwardlists and in the secondphasethe garbagecollector
cannotseethe differenceanymore.Another problemis thatfor an argumentvectorthereis no data
field in which a list of backwardpointerscanbe stored.This implies that the first argumentof an
argumentvector canappeaiin two differentlists of pointers:in the list of pointersrefering to this
vector and in the list gbointersbelongingto the nodeto which the first argumenttself refers. This
canbe solvedby appendinghe secondist to the first one, and markingall the pointersin the first
list. Since nodes aralignedon long word boundariesaddressewvill alwaysbe a multiple of 4, so
that the secondleast significant bit can be used for this. Although the algorithm becomesmore
complex, it is hardly slower since argument vectors are rarely shared.

Garbage collecting with code pointers

A much-discussetkchniguefor implementinggarbagecollection, that is supposedo be efficient,
uses code pointers. Besidesthe ordinary code for evaluating closures, the compiler generates
additional codethat is called by the garbagecollector when a closureis encounteredduring the
garbage collection. Among others, this technique has been used in Payds(1991) and Sansom
(1991). It will be clear that the main advantage of thethodis thatis requiresno run-timetestsfor
arities. Loops needed to handle all the arguments of a caddetan be avoidedby unfolding them
in the additionalcode.Apart from the doubtsthat we havewhetherthe gainin speedis significant,
there is one major disadvantage of this method: it le&yto a (sometimesunacceptablencreaseof
code (note that the increase of code is proportiflémumberof functionsappearingn a program).
Things are getting even worse if the proposed combined garbage colletedith Sansom(1991)
it is shown thatin this caseseveralentry points are necessaryeachcorrespondingo one of the
garbagecollectionphases. An advantagef an 'interpretingcollector'is thatit canbe optimisedas
much as possible using the the full power of the target machine. Furthermore,adjusting and
experimenting is certainly much easier with the interpreting collectontitarthe other collector. All
in all, we believe that the advantages of usinde pointersare outweighedby the advantagesf the
interpreting collector.

4. Discussion

In this section we analyse tipeoposedoptimisationsbriefly with the aid of two exampleprograms.
The first program is called fastfourier, an algorithm that comphtefast fourier transformatiorof a

list of 8K complex numbers. The secopebgram,calledreverse reverses list of 3K elements3K
times.

The first table (Table 3.1) showsthe resultsof comparingan unoptimisednoderepresentationwith
the representatioras presentedn section2. The timesin the table are executiontimes given in
seconds. In both programs only the copying garbage collector has been used.

old new
fastfourier 23 17
reverse 63 57
Table 3.1

The secondtable (Table 3.2) comparescopying with sliding compactiongarbagecollection. The
example programs have been executed with a number of heap sizes. The timasegiviess for the
garbagecollectionsalone,againgiven in secondsThe actualexecutiontimesare not included. The
table also gives the results when using the combined garbage collection algorithm.

copying gc sliding compaction g¢ combined gc

fastfourier

M OutOfHeap 11 11
1.5M 8.3 5.4 5.2
2M 4.0 3.7 3.4
3M 2.1 2.1 2.1
reverse

0.25 59 57 57
1M 9.0 12 8.9
2M 4.5 6.2 4.2

Table 3.2

When decreasingthe heap size the compactiongarbagecollection clearly defeatsthe copying
collector. It shouldbe noticedthat evenwhen using a large heapthe copying collector is not much
fasterthan the other one. This can be explainedas follows: the copying garbagecollector uses
effectively only one half othe heap,so it hasto be calledtwice as often asthe compactiongarbage
collector. The amount of memotigatis non garbages for both casedessthanhalf of the memory
(otherwisethe algorithmwould fail to terminatecorrectly). Dueto its highly optimisedscanningof

the bit vectorthe compactiongarbagecollectoris ableto find all thesenon-garbagaodesvery fast.

This implies that the overhedldat is involved in scanningthe whole bit vector (of which the sizeis
proportionalto the heapsize) and skipping all the garbagenodesis small. The combinationof both
algorithms confirms our expectations: in general, it is at least as fast as the best of the two algoritr

We truly recommendo usethe combinedgarbagecollectionalgorithm:it improvesthe performance
of the program in all cases. ©burse,havingtwo different algorithmsfor garbagecollectioncauses
an increase of the size of the rime system.However,the overheaddueto this is negligiblewhen

compared with the code generafed an averaggunctional program.For, the codeof eachgarbage

collector occupies only about 1.2 memory.The alternativenode structuredescribedn section2

is worth considering Measurementlaveshownthatthe gain in executionspeedvariesfrom 10 to

50 percent. It should be pointed out that implementing these representations may take sometdoing
only the instructionsworking on nodeshaveto be adjustedout also the garbagecollectorsbecome
more complicated.

References

Augustssori., Johnssorr. (1989), 'The ChalmersLazy-ML Compiler', The ComputerJournal,
Vol. 32, No. 2 1989.

BarendregtH.P., Eekelen,M.C.J.D. van, Glauert,J.R.W., Kennaway,J.R., Plasmeijer,M.J.,
Sleep, M.R. (1987), 'Term Graph Reduction', Proceedingsof Parallel Architectures and
Language$urope(PARLE), partll, Eindhoven,The Netherlands .NCS Vol. 259, pp. 141-
158, June 1987.

Brus T., EekelenM.C.J.D. van, Leer M. van, PlasmeijerM.J. (1987), 'Clean - a Languagefor
Functional Graph Rewriting', Proc. of the third International Conference on Functional
ProgrammingLanguagesand Computer Architecture (FPCA '87), Portland, Oregon, USA,
Springer Lecture Notes on Computer Science 274, pp. 346-384.

Burstall, R.M., MacQueenD.B., andSanella,D.T. (1980), 'Hope: An ExperimentalApplicative
Language', Proceedings of the 1980 LISP Conference, 136 - 143.

CheneyC.J. (1970),'A nonrecursivdist compactingalgorithm', CACM 13, November1970, pp.
677-678.

Eekelen, M.C.J.D. van, Nocker E.G.J.M.H., Plasmeijer M.J., Smetsers J.E.W. (1990),
‘ConcurrentClean, version 0.6', TechnicalReport90-21, University of Nijmegen, December
1990.

Groningend.H.G. van. (1991), 'Implementingthe ABC-machineon M680x0 basedarchitectures'.
Technical Report, Department of Computer Science, University of Nijmegen, to appear in 1991

JohnssonTh. (1987), 'Compiling Lazy Functional Programminglanguages'. Dissertation at
Chalmers University, Goteborg, Sweden. ISBN 91-7032-280-5.

Jonker H.B.M.(1979),'A fastgarbagecompactionalgorithm’, Info. Proc. Lett. 9, July 1979, pp.
26-30.

KoopmanP.W.M., EekelenM.C.J.D. van, Nocker E.G.J.M.H., Smetsers].E.W., Plasmeijer
M.J. (1990). 'The ABC-machine: A Sequential Stack-basedAbstract Machine For Graph
Rewriting'. Technical Report no. 90-22, December 1990, University of Nijmegen.

Nocker E.G.J.M.H., Smetsersl.E.W., Eekelen,M.C.J.D. van, Plasmeijer(1991). 'Concurrent
Clean', Proceedings tiie Conferenceon Parallel Architecturesand Languagesurope(PARLE
'91), Eindhoven,The NetherlandsLecture Noteson Computer Science,Springer Verlag, to
appear in June 1991.

Peyton JonesS.L, Salkild J. (1989). 'The SpinelessTagless G-machine'. Proceedingsof the
Conferenceon Functional Programming Languagesand Computer Architectures, Addison
Wesley, pp 184 - 201.

PeytonJonesS.L (1991), 'The spinelesstaglessG-machine:a secondattempt’, Proc. of Third
InternationalWorkshopon Implementationof FunctionalLanguageson Parallel Architectures,
Technical Report SeriesCSTR91-07, June 1991, Departmentof Electronics and Computer
Science, University of Southampton, UK, pp. 147-192.

SansonP.M. (1991), 'Dual-ModeGarbageCollection’, Proc. of Third InternationalWorkshopon
Implementationof Functional Languageson Parallel Architectures, Technical Report Series
CSTR91-07, June 1991, Departmentof Electronics and Computer Science, University of
Southampton, UK, pp. 283-310

SmetsersJ.E.W., (1989). 'Compiling Clean to Abstract ABC-Machine Code', University of
Nijmegen, Technical Report 89-20, October 1989.

SmetsersJ.E.W., Nocker E.G.J.M.H., Groningen J.H.G. van., Plasmeijer M.J. (1991),
‘Generating Efficient Code for Lazy Functional Languages', Proc. dftixmationalConference
on FunctionalProgramming_anguagesnd ComputerArchitecture(FPCA'91), Boston, USA,
Springer Lecture Notes on Computer Science, Springer Verlag, to appear in 1991.

